Independent Submission D. Harkins, Ed.
Request for Comments: 8492 HP Enterprise
Category: Informational February 2019
ISSN: 2070-1721

Secure Password Ciphersuites for Transport Layer Security (TLS)
Abstract

This memo defines several new ciphersuites for the Transport Layer
Security (TLS) protocol to support certificateless, secure
authentication using only a simple, low-entropy password. The
exchange is called "TLS-PWD". The ciphersuites are all based on an
authentication and key exchange protocol, named "dragonfly", that is
resistant to offline dictionary attacks.

Status of This Memo

This document is not an Internet Standards Track specification; it is
published for informational purposes.

This is a contribution to the RFC Series, independently of any other
RFC stream. The RFC Editor has chosen to publish this document at
its discretion and makes no statement about its value for
implementation or deployment. Documents approved for publication by
the RFC Editor are not candidates for any level of Internet Standard;
see Section 2 of RFC 7841.

Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
https://www.rfc-editor.org/info/rfc8492.

Copyright Notice

Copyright (c) 2019 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license—-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document.

Harkins Informational [Page 1]

REFC 8492 TLS Password February 2019

Table of Contents

1. Introduction and Motivationtiiiiiiiiiiiiiiinnnnnnnnn. 3
1.1. The Case for Certificateless Authentication 3
1.2. Resistance to Dictionary Attacksciiiiiiiiiiiiiinneenn. 3

2. KeY WOTAS vttt ittt ettt eeeeeeeeeeeeeeeeoeeseesessossaseaeenneses 4

3. Notation and BackgroUundt it eeeeeeeeeeeseonsoseosasnasas 4
R o it ol 3 o 4
3.2. Discrete Logarithm Cryptographyiieiiiitienneeeeenns 5

3.2.1. Elliptic Curve Cryptography ..o ieeiii ittt nneeeennns 5
3.2.2. Finite Field Cryptographyiiiiiiiitiinneneennns 7
3.3. Instantiating the Random Functionc.ieiiiiieieeeennn 8
3.4 . PaSSWOILAS 4ttt ittt et tteneeeeeeneeeeeeneeeenneeeeennneeennnns 8
3.5, ASSUMPLIONS 4ttt ittt ittt e eeoeeeeeeoeseseesonessssansssssaness 9

4. Specification of the TLS-PWD Handshakeciiiiiiinn. 10
4.1. TLS-PWD Pre-TLS 1.3 .ttt eeeeeennns 10
4.2, TLS-PWD dn TLS 1.3 ittt ittt ttteeeeeeeeeeeeeaeeaeeanennens 11
4.3. Protecting the Usernamec.iiiiiieeeeeeeeeeeoneenennens 11

4.3.1. Construction of a Protected Username 12
4.3.2. Recovery of a Protected Usernamecceeeueeeen. 13

4.4. Fixing the Password Elementc.uuiuiiiiiiiiiiiiiiennnn 14
4.4.1. Computing an ECC Password Element 16
4.4.2. Computing an FFC Password Elementcc0... 18
4.4.3. Password Naming .. eiiiietieteeeeneeeeeeeeeeoneenens 19
4.4.4. Generating TLS-PWD Committ iiiinteneennenneens 20

4.5. Changes to Handshake Message Contentsciiiieen... 20
4.5.1. Pre—1.3 TLS ittt ittt teeeenennnnnnnnnnnnnnnnnnnnanas 20
4.5.1.1. ClientHello ChangesS eereeenneeeennns 20

4.5.1.2. ServerKeyExchange Changesccceuun. 21

4.5.1.3. ClientKeyExchange Changes0.... 23

L T 11 T 24
4.5.2.1. TLS 1.3 KeySharettt tieennennnns 24

4.5.2.2. ClientHello ChangesS ... eeeeeeeeneeeannns 24

4.5.2.3. ServerHello ChangesS ... eeeeeeenneeeennns 25

4.5.2.4. HelloRetryRequest Changesc.voieeenn. 25

4.6. Computing the Shared Secretttt ntieneenneaens 26

5. Ciphersuite Definition ...ttt ittt ittt teeeeneeeeonennnns 26

6. IANA Considerationsttt ittt tnennenenennnnnnnnenns 27

7. Security Considerationsii ittt eeeneeeeeeeeeeeaeasessannns 27

8. Human Rights Considerations ...ttt eeeneeeeenneeeennns 30

9. Implementation Considerationsc.iiiiiiiiiititnneeeennnneeens 31

1 REf N eSS vttt it i ittt et e ittt e e eeeseaseeeoeseaseasannenas 32
10.1. Normative ReferenNCEesS ...ttt ittt it tteneeeennneeeennnnnns 32
10.2. Informative RefErenNCEeS ...ttt ittt ittt ittt tttieeennns 33

Appendix A. Example EXChangettt iiteneteeeeneeeonasansannns 35

ACKNOWledgement S v it ittt ittt ettt eeeeeeeenesetoanasetsonsseeeaenes 40

AULhOTr 5 AdArEesS S t ittt ittt it ettt ittt teeeeeeeneoeneaneonesness 40

Harkins Informational [Page 2]

REFC 8492 TLS Password February 2019

1. Introduction and Motivation
1.1. The Case for Certificateless Authentication

Transport Layer Security (TLS) usually uses public key certificates
for authentication [RFC5246] [RFC8446]. This is problematic in some
cases:

o Frequently, TLS [RFC5246] is used in devices owned, operated, and
provisioned by people who lack competency to properly use
certificates and merely want to establish a secure connection
using a more natural credential like a simple password. The
proliferation of deployments that use a self-signed server
certificate in TLS [RFC5246] followed by a basic password exchange
over the unauthenticated channel underscores this case.

o The alternatives to TLS-PWD for employing certificateless TLS
authentication —-- using pre-shared keys in an exchange that is
susceptible to dictionary attacks or using a Secure Remote
Password (SRP) exchange that requires users to, a priori, be fixed
to a specific Finite Field Cryptography (FFC) group for all
subsequent connections —-- are not acceptable for modern
applications that require both security and cryptographic agility.

o A password is a more natural credential than a certificate (from
early childhood, people learn the semantics of a shared secret),
so a password-based TLS ciphersuite can be used to protect an
HTTP-based certificate enrollment scheme like Enrollment over
Secure Transport (EST) [RFC7030] to parlay a simple password into
a certificate for subsequent use with any certificate-based

authentication protocol. This addresses a significant
"chicken—-and-egg" dilemma found with certificate-only use of
[REFC5246] .

o Some PIN-code readers will transfer the entered PIN to a smart
card in cleartext. Assuming a hostile environment, this is a bad
practice. A password-based TLS ciphersuite can enable the
establishment of an authenticated connection between reader and
card based on the PIN.

1.2. Resistance to Dictionary Attacks

It is a common misconception that a protocol that authenticates with
a shared and secret credential is resistant to dictionary attacks if
the credential is assumed to be an N-bit uniformly random secret,
where N is sufficiently large. The concept of resistance to
dictionary attacks really has nothing to do with whether that secret

Harkins Informational [Page 3]

REFC 8492 TLS Password February 2019

3.

can be found in a standard collection of a language’s defined words
(i.e., a dictionary). It has to do with how an adversary gains an
advantage in attacking the protocol.

For a protocol to be resistant to dictionary attacks, any advantage
an adversary can gain must be a function of the amount of
interactions she makes with an honest protocol participant and not a
function of the amount of computation she uses. This means that the
adversary will not be able to obtain any information about the
password except whether a single guess from a single protocol run
that she took part in is correct or incorrect.

It is assumed that the attacker has access to a pool of data from
which the secret was drawn —- it could be all numbers between 1 and
27”N; it could be all defined words in a dictionary. The key is that
the attacker cannot do an attack and then go offline and enumerate
through the pool trying potential secrets (computation) to see if one
is correct. She must do an active attack for each secret she wishes
to try (interaction), and the only information she can glean from
that attack is whether the secret used with that particular attack is
correct or not.

Key Words

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.

Notation and Background

.1. Notation

The following notation is used in this memo:

password
a secret ——- and potentially low-entropy —-- word, phrase, code, or
key used as a credential for authentication. The password is
shared between the TLS client and TLS server.

y = H(x)
a binary string of arbitrary length, x, is given to a function H,
which produces a fixed-length output, y.

a | b
denotes concatenation of string "a" with string "b".

Harkins Informational [Page 4]

REFC 8492 TLS Password February 2019

[alb
indicates a string consisting of the single bit "a" repeated
"b" times.

x mod y
indicates the remainder of division of x by y. The result will

be between 0 and vy.

len (x)
indicates the length in bits of the string "x".

lgr(a, b)
takes "a" and a prime, b, and returns the Legendre symbol (a/b).

LSB (x)
returns the least-significant bit of the bitstring "x".

G.x
indicates the x-coordinate of a point, G, on an elliptic curve.

3.2. Discrete Logarithm Cryptography

The ciphersuites defined in this memo use discrete logarithm
cryptography (see [SP800-56A]) to produce an authenticated and shared
secret value that is an Element in a group defined by a set of domain
parameters. The domain parameters can be based on either FFC or
Elliptic Curve Cryptography (ECC).

Elements in a group —-- either an FFC or ECC group —-- are indicated
using uppercase, while scalar values are indicated using lowercase.

3.2.1. Elliptic Curve Cryptography

The authenticated key exchange defined in this memo uses fundamental
algorithms of elliptic curves defined over GF (p) as described in
[RFC6090]. Ciphersuites defined in this memo SHALL only use ECC
curves based on the Weierstrass equation y*2 = x*3 + a*x + b.

Domain parameters for the ECC groups used by this memo are:

o A prime, p, determining a prime field GF (p). The cryptographic
group will be a subgroup of the full elliptic curve group, which
consists of points on an elliptic curve —-- Elements from GF (p)
that satisfy the curve’s equation —-- together with the "point at
infinity" that serves as the identity Element.

Harkins Informational [Page 5]

REFC 8492 TLS Password February 2019

o Elements a and b from GF (p) that define the curve’s equation. The
point (x, y) in GF(p) x GF(p) 1is on the elliptic curve if and only
if (y*2 - x*3 - a*x - b) mod p equals zero (0).

o A point, G, on the elliptic curve, which serves as a generator for
the ECC group. G is chosen such that its order, with respect to
elliptic curve addition, is a sufficiently large prime.

o A prime, g, which is the order of G and thus is also the size of
the cryptographic subgroup that is generated by G.

o A co—-factor, f, defined by the requirement that the size of the
full elliptic curve group (including the "point at infinity") be
the product of f and qg.

This memo uses the following ECC functions:

o Z = elem-op(X, Y¥Y) = X + ¥Y: two points on the curve, X and Y, are
summed to produce another point on the curve, Z. This is the
group operation for ECC groups.

o Z = scalar-op(x, ¥Y) = x * Y: an integer scalar, x, acts on a point
on the curve, Y, via repetitive addition (Y is added to itself
x times), to produce another ECC Element, Z.

o Y = inverse(X): a point on the curve, X, has an inverse, Y, which
is also a point on the curve, when their sum is the "point at
infinity" (the identity for elliptic curve addition). In other
words, R + inverse(R) = "0O".

o z = F(X): the x-coordinate of a point (x, y) on the curve is

returned. This is a mapping function to convert a group Element
into an integer.

Only ECC groups over GF (p) can be used with TLS-PWD.
Characteristic—-2 curves SHALL NOT be used by TLS-PWD. ECC groups
over GF (2”m) SHALL NOT be used by TLS-PWD. In addition, ECC groups
with a co-factor greater than one (1) SHALL NOT be used by TLS-PWD.

A composite (x, y) pair can be validated as a point on the elliptic
curve by checking that 1) both coordinates x and y are greater than
zero (0) and less than the prime defining the underlying field,

2) coordinates x and y satisfy the equation of the curve, and 3) they
do not represent the "point at infinity". TIf any of those conditions
are not true, the (x, y) pair is not a valid point on the curve.

Harkins Informational [Page 6]

REFC 8492 TLS Password February 2019

A compliant implementation of TLS-PWD SHALL support
group twenty-three (23) and SHOULD support group twenty-four (24)
from the "TLS Supported Groups" registry; see [TLS_REG].

3.2.2. Finite Field Cryptography
Domain parameters for the FFC groups used by this memo are:

o A prime, p, determining a prime field GF(p) (i.e., the integers
modulo p). The FFC group will be a subgroup of GF(p)* (i.e., the
multiplicative group of non-zero Elements in GF (p)) .

o An Element, G, in GF (p)*, which serves as a generator for the FFC
group. G is chosen such that its multiplicative order is a
sufficiently large prime divisor of ((p - 1)/2).

o A prime, g, which is the multiplicative order of G and thus is
also the size of the cryptographic subgroup of GF (p)* that is
generated by G.

This memo uses the following FFC functions:

o Z = elem-op(X, ¥Y¥) = (X * Y) mod p: two FFC Elements, X and Y, are
multiplied modulo the prime, p, to produce another FFC Element, Z.
This is the group operation for FFC groups.

o Z = scalar-op(x, Y) = Y¥Y"x mod p: an integer scalar, x, acts on an
FFC group Element, Y, via exponentiation modulo the prime, p, to
produce another FFC Element, Z.

o Y = inverse(X): a group Element, X, has an inverse, Y, when the
product of the Element and its inverse modulo the prime equals
one (1). In other words, (X * inverse (X)) mod p = 1.

o z = F(X): is the identity function, since an Element in an FFC
group is already an integer. It is included here for consistency

in the specification.

Many FFC groups used in IETF protocols are based on safe primes and

do not define an order (gq). For these groups, the order (gq) used in
this memo shall be the prime of the group minus one divided by two —-—
(p - 1)/2.

An integer can be validated as being an Element in an FFC group by
checking that 1) it is between one (1) and the prime, p, exclusive
and 2) modular exponentiation of the integer by the group order, q,
equals one (1). If either of these conditions is not true, the
integer is not an Element in the group.

Harkins Informational [Page 7]

REFC 8492 TLS Password February 2019

A compliant implementation of TLS-PWD SHOULD support
group two hundred fifty-six (256) and group two hundred fifty-eight
(258) from the "TLS Supported Groups" registry on [TLS_REG].

3.3. Instantiating the Random Function

The protocol described in this memo uses a random function, H, which

is modeled as a "random oracle". At first glance, one may view this

as a hash function. As noted in [RANDOR], though, hash functions are
too structured to be used directly as a random oracle. But they can

be used to instantiate the random oracle.

The random function, H, in this memo is instantiated by using the
hash algorithm defined by the particular TLS-PWD ciphersuite in
Hashed Message Authentication Code (HMAC) mode with a key whose
length is equal to the block size of the hash algorithm and whose
value is zero. For example, if the ciphersuite is
TLS_ECCPWD_WITH_AES_128_GCM_SHA256, then H will be instantiated with
SHA256 as:

H(x) = HMAC-SHA256([0]32, x)

3.4. Passwords
The authenticated key exchange used in TLS-PWD requires each side to
have a common view of a shared credential. To protect the server’s
database of stored passwords, a password MAY be salted. When
[REFC5246] or earlier is used, the password SHALL be salted. When
[RFC8446] is used, a password MAY be stored with a salt or without.
The password, username, and, optionally, the salt can create an

irreversible digest called the "base", which is used in the
authenticated key exchange.

The salting function is defined as:
base = HMAC-SHA256 (salt, username password)
The unsalted function is defined as:

base = SHA256 (username | password)

Harkins Informational [Page 8]

REFC 8492 TLS Password February 2019

The password used for generation of the base SHALL be represented as
a UTF-8 encoded character string processed according to the rules of
the OpaqueString profile of [RFC8265], and the salt SHALL be a

32-octet random number. The server SHALL store a tuple of the form:

{ username, base, salt }
if the password is salted and:

{ username, base }
if it is not. When password salting is being used, the client
generates the base upon receiving the salt from the server;
otherwise, it may store the base at the time the username and
password are provisioned.

3.5. Assumptions

The security properties of the authenticated key exchange defined in
this memo are based on a number of assumptions:

1. The random function, H, is a "random oracle" as defined in
[RANDOR] .

2. The discrete logarithm problem for the chosen group is hard.
That is, given g, p, and y = g*x mod p, it is computationally
infeasible to determine x. Similarly, for an ECC group given the

curve definition, a generator G, and ¥ = x * G, it is
computationally infeasible to determine x.

3. Quality random numbers with sufficient entropy can be created.
This may entail the use of specialized hardware. If such
hardware is unavailable, a cryptographic mixing function (like a
strong hash function) to distill entropy from multiple,
uncorrelated sources of information and events may be needed. A
very good discussion of this can be found in [RFC4086].

If the server supports username protection (see Section 4.3), it is
assumed that the server has chosen a domain parameter set and
generated a username-protection keypair. The chosen domain parameter
set and public key are assumed to be conveyed to the client at the
time the client’s username and password were provisioned.

Harkins Informational [Page 9]

RFC 8492

TLS Password

4. Specification of the TLS-PWD Handshake

The key exchange underlying TLS-PWD is the "dragonfly"
password-authenticated key exchange (PAKE) as defined i

February 2019

n [RFC7664].

The authenticated key exchange is accomplished by each side deriving

a Password Element (PE)

[RFC7664] in the chosen group,

making a

"commitment" to a single guess of the password using the PE, and

generating a shared secret.

The ability of each side t

o produce a

valid finished message using a key derived from the shared secret
allows each side to authenticates itself to the other side.

The authenticated key exchange is dropped into the standard TLS
message handshake by defining extensions to some of the messages.

4.1. TLS-PWD Pre-TLS 1.3

Client

ClientHello (name)

Se
ServerKeyExchange

Server

rverHello
(commit)

Harkins

<———————= ServerHello Done
ClientKeyExchange (commit)
ChangeCipherSpec
Finished = —-———————— >
ChangeCipherSpec
<—————— Finished
Application Data <—————— > Application Data

Figure 1: Pre-TLS 1.3 TLS-PWD Handshake

Informational

[Page 10]

REFC 8492 TLS Password February 2019

4

4

2.

.3.

TLS-PWD in TLS 1.3

Client Server

ClientHello (name)

+ key_share (commit) @ —-——————— >
ServerHello
+ key_share (commit)
{EncryptedExtensions}
{Finished}
<——————— [Application Data*]

{Finished} ———————— >
[Application Data] <——————= > [Application Data]

Figure 2: TLS 1.3 TLS-PWD Handshake
Protecting the Username

The client is required to identify herself to the server before the
server can look up the appropriate client credential with which to

perform the authenticated key exchange. This has negative privacy
implications and opens up the client to tracking and increased
monitoring. It is therefore useful for the client to be able to

protect her username from passive monitors of the exchange and
against active attack by a malicious server. TLS-PWD provides such a
mechanism. Support for protected usernames is RECOMMENDED.

To enable username protection, a server chooses a domain parameter
set and generates an ephemeral public/private keypair. This keypair
SHALL only be used for username protection. For efficiency, the
domain parameter set used for username protection MUST be based on
ECC. Any ECC group that is appropriate for TLS-PWD (see

Section 3.2.1) is suitable for this purpose, but for
interoperability, prime256vl (aka NIST’s p256 curve) MUST be
supported. The domain parameter set chosen for username protection
is independent of the domain parameter set chosen for the underlying
key exchange —-- i.e., they need not be the same.

When the client’s username and password are provisioned on the
server, the chosen group and its public key are provisioned on the
client. This is stored on the client along with the server-specific
state (e.g., the hostname) it uses to initiate a TLS-PWD exchange.
The server uses the same group and public key with all clients.

To protect a username, the client and server perform a static-—
ephemeral Diffie-Hellman exchange. Since the y-coordinate is not
necessary and eliminating it will reduce message size, compact
representation (and therefore compact output; see [RFC6090]) is used

Harkins Informational [Page 11]

REFC 8492 TLS Password February 2019

Har

in the static-ephemeral Diffie-Hellman exchange. The result of the
Diffie-Hellman exchange is passed to the HMAC-based Key Derivation
Function (HKDF) [RFC5869] to create a key-encrypting key suitable for
AES-SIV [RFC5297] (where "AES" stands for "Advanced Encryption
Standard" and "SIV" stands for "Synthetic Initialization Vector") in
its deterministic authenticated encryption mode. The length of the
key—-encrypting key (1) and the hash function to use with the HKDF
depend on the length of the prime, p, of the group used to provide
username protection:

o SHA-256, SIV-128, 1=256 bits: when len(p) <= 256

o SHA-384, SIV-192, 1=384 bits: when 256 < len(p) <= 384
o SHA-512, SIV-256, 1=512 bits: when len(p) > 384

.1. Construction of a Protected Username

Prior to initiating a TLS-PWD exchange, the client chooses a random
secret, ¢, such that 1 < ¢ < (g - 1), where g is the order of the
group from which the server’s public key was generated, and it uses
scalar-op() with the group’s generator to create a public key, C. It
uses scalar-op() with the server’s public key and c to create a
shared secret, and it derives a key-encrypting key, k, using the
"saltless" mode of the HKDF [RFC5869]:

C = scalar-op(c, G)
Z = scalar-op(c, S)
k = HKDF-expand (HKDF-extract (NULL, Z.x), "", 1)
where NULL indicates the salt-free invocation and "" indicates an

empty string (i.e., there is no "context" passed to the HKDF).

The client’s username SHALL be represented as a UTF-8 encoded
character string processed according to the rules of the OpaqueString
profile of [RFC8265]. The output of OpaqueString is then passed with
the key, k, to SIV-encrypt with no Additional Authenticated Data
(AAD) and no nonce, to produce an encrypted username, u:

u = SIV-encrypt (k, username)

Note: The format of the ciphertext output includes the
authenticating SIV.

kins Informational [Page 12]

REFC 8492 TLS Password February 2019

The protected username SHALL be the concatenation of the x-coordinate
of the client’s public key, C, and the encrypted username, u. The
length of the x-coordinate of C MUST be equal to the length of the
group’s prime, p, prepended with zeros, if necessary. The protected
username is inserted into the extension_data field of the pwd_protect
extension (see Section 4.4.3).

To ensure that the username remains confidential, the random secret,
c, MUST be generated from a source of random entropy; see
Section 3.5.

The length of the ciphertext output from SIV, minus the synthetic
initialization vector, will be equal to the length of the input

plaintext —— in this case, the username. To further foil traffic
analysis, it is RECOMMENDED that clients append a series of NULL
bytes to their usernames prior to passing them to SIV-encrypt () such

that the resulting padded length of the username is at least
128 octets.

4.3.2. Recovery of a Protected Username

A server that receives a protected username needs to recover the
client’s username prior to performing the key exchange. To do so,
the server computes the client’s public key; completes the static-—
ephemeral Diffie-Hellman exchange; derives the key-encrypting key, k;
and decrypts the username.

The length of the x-coordinate of the client’s public key is known
(it is the length of the prime from the domain parameter set used to
protect usernames) and can easily be separated from the ciphertext in
the pwd_name extension in the ClientHello —-- the first len(p) bits
are the x-coordinate of the client’s public key, and the remaining
bits are the ciphertext.

Since compressed representation is used by the client, the server
MUST compute the y-coordinate of the client’s public key by using the
equation of the curve:

y*2 = x*"3 + ax + b

and solving for y. There are two solutions for y, but since
compressed output is also being used, the selection is irrelevant.
The server reconstructs the client’s public value, C, from (x, V).
If there is no solution for y or if (x, y) is not a valid point on
the elliptic curve (see Section 3.2.1), the server MUST treat the
ClientHello as if it did not have a password for a given username
(see Section 4.5.1.1).

Harkins Informational [Page 13]

REFC 8492 TLS Password February 2019

The server then uses scalar-op() with the reconstructed point C and
the private key it uses for protected passwords, s, to generate a
shared secret, and it derives a key-encrypting key, k, in the same
manner as that described in Section 4.3.1.

Z = scalar-op(s, C)
k = HKDF-expand (HKDF-extract (NULL, Z.x), "", 1)

The key, k, and the ciphertext portion of the pwd_name extension, u,
are passed to SIV-decrypt with no AAD and no nonce, to produce the
username:

username = SIV-decrypt (k, u)

If SIV-decrypt returns the symbol FAIL indicating unsuccessful
decryption and verification, the server MUST treat the ClientHello as
if it did not have a password for a given username (see

Section 4.5.1.1). If successful, the server has obtained the
client’s username and can process it as needed. Any NULL octets
added by the client prior to encryption can be easily stripped off of
the string that represents the username.

4.4. Fixing the Password Element

Prior to making a "commitment", both sides must generate a secret
Element (PE) in the chosen group, using the common password-derived
base. The server generates the PE after it receives the ClientHello
and chooses the particular group to use, and the client generates the
PE prior to sending the ClientHello in TLS 1.3 and upon receipt of
the ServerKeyExchange in TLS pre-1.3.

Fixing the PE involves an iterative "hunting-and-pecking" technique
using the prime from the negotiated group’s domain parameter set and
an ECC-specific or FFC-specific operation, depending on the
negotiated group.

To thwart side-channel attacks that attempt to determine the number
of iterations of the hunting-and-pecking loop that are used to find
the PE for a given password, a security parameter, m, is used to
ensure that at least m iterations are always performed.

First, an 8-bit counter is set to the value one (l1). Then, H is used
to generate a password seed from the counter, the prime of the
selected group, and the base (which is derived from the username,
password, and, optionally, the salt; see Section 3.4):

pwd-seed = H(base | counter | r)

Harkins Informational [Page 14]

REFC 8492 TLS Password February 2019

Next, a context is generated consisting of random information. For
versions of TLS less than 1.3, the context is a concatenation of the
ClientHello random and the ServerHello random. For TLS 1.3, the
context is the ClientHello random:

if (version < 1.3) {

context = ClientHello.random | ServerHello.random
} else {
context = ClientHello.random

}

Then, using the technique from Appendix B.5.1 of [FIPS186-4], the
pwd-seed is expanded, using the Pseudorandom Function (PRF), to the
length of the prime from the negotiated group’s domain parameter set
plus a constant, sixty-four (64), to produce an intermediate pwd-tmp,
which is modularly reduced to create the pwd-value:

n = len(p) + 64

pwd-tmp = PRF (pwd-seed, "TLS-PWD Hunting And Pecking",
context) [0..n];

pwd-value = (pwd-tmp mod (p — 1)) + 1

The pwd-value is then passed to the group-specific operation, which
either returns the selected PE or fails. If the group-specific
operation fails, the counter is incremented, a new pwd-seed is
generated, and the hunting-and-pecking process continues; this
procedure continues until the group-specific operation returns the
PE. After the PE has been chosen, the base is changed to a random
number, the counter is incremented, and the hunting-and-pecking
process continues until the counter is greater than the security
parameter, m.

The probability that one requires more than n iterations of the
hunting-and-pecking loop to find an ECC PE is roughly (g/2p)”n and to
find an FFC PE is roughly (g/p)”"n, both of which rapidly approach
zero (0) as n increases. The security parameter, m, SHOULD be set
sufficiently large such that the probability that finding the PE
would take more than m iterations is sufficiently small (see

Section 7).

When the PE has been discovered, pwd-seed, pwd-tmp, and pwd-value
SHALL be irretrievably destroyed.

Harkins Informational [Page 15]

REFC 8492 TLS Password February 2019

4.4.1. Computing an ECC Password Element

The group-specific operation for ECC groups uses pwd-value, pwd-seed,
and the equation for the curve to produce the PE. First, pwd-value
is used directly as the x-coordinate, x, with the equation for the
elliptic curve, with parameters a and b from the domain parameter set
of the curve, to solve for a y-coordinate, y. If there is no
solution to the quadratic equation, this operation fails and the
hunting-and-pecking process continues. If a solution is found, then
an ambiguity exists, as there are technically two solutions to the
equation, and pwd-seed is used to unambiguously select one of them.
If the low-order bit of pwd-seed is equal to the low-order bit of vy,
then a candidate PE is defined as the point (x, y); if the low-order
bit of pwd-seed differs from the low-order bit of y, then a candidate
PE is defined as the point (x, p - y), where p is the prime over
which the curve is defined. The candidate PE becomes the PE, a
random number is used instead of the base, and the hunting-and-
pecking process continues until it has looped through m iterations,
where m is a suitably large number to prevent side-channel attacks
(see [RFC76641]).

Harkins Informational [Page 16]

REFC 8492 TLS Password February 2019

Algorithmically, the process looks like this:

found = 0
counter = 0

n = len(p) + 64
if (version < 1.3)

context = ClientHello.random | ServerHello.random
} else {
context = ClientHello.random
}
do {
counter = counter + 1
seed = H(base | counter | P)
tmp = PRF (seed, "TLS-PWD Hunting And Pecking", context) [0..n]
val = (tmp mod (p — 1)) + 1
if ((val”3 + a*val + b) mod p is a quadratic residue)
then
if (found == 0)
then
x = val
save = seed
found =1
base = random()
fi
fi
} while ((found == 0) || (counter <= m))
y = sgrt (x"3 + a*x + b) mod p
if (lsb(y) == lsb(save))
then
PE = (x, y)
else
PE = (x, p - V)
fi

Figure 3: Fixing PE for ECC Groups

Checking whether a value is a quadratic residue modulo a prime can
leak information about that value in a side-channel attack.
Therefore, it is RECOMMENDED that the technique used to determine if
the value is a quadratic residue modulo p first blind the value with
a random number so that the blinded value can take on all numbers
between 1 and (p - 1) with equal probability. Determining the
quadratic residue in a fashion that resists leakage of information is
handled by flipping a coin and multiplying the blinded value by
either a random quadratic residue or a random quadratic nonresidue
and checking whether the multiplied value is a quadratic residue or a
quadratic nonresidue modulo p, respectively. The random residue and

Harkins Informational [Page 17]

RFC 8492 TLS Password

nonresidue can be calculated prior to hunting and pecking by

February 2019

calculating the Legendre symbol on random values until they are

found:
do {
gr = random ()
} while (lgr(gr, p) != 1)
do {
gnr = random{()

} while (lgr(gnr, p) != -1)

Algorithmically, the masking technique to find out whether a value is

a quadratic residue modulo a prime or not looks like this:

is_qgquadratic_residue (val, p) {

r = (random() mod (p - 1)) + 1
num = (val * r * r) mod p
if (lsb(r) == 1)
num = (num * gr) mod p
if (lgr(num, p) == 1)
then
return TRUE
fi
else
num = (num * gnr) mod p
if (lgr(num, p) == -1)
then
return TRUE
fi
fi

return FALSE
}

The random quadratic residue and quadratic nonresidue (gr and gnr

above) can be used for all the hunting-and-pecking loops,
blinding value, r, MUST be chosen randomly for each loop.

4.4.2. Computi