Stream: Internet Engineering Task Force (IETF)

RFC: 9528

Category: Standards Track

Published: March 2024

ISSN: 2070-1721

Authors: G.Selander J.Preufd Mattsson F. Palombini
Ericsson Ericsson Ericsson

RFC 9528
Ephemeral Diffie-Hellman Over COSE (EDHOC)

Abstract

This document specifies Ephemeral Diffie-Hellman Over COSE (EDHOC), a very compact and
lightweight authenticated Diffie-Hellman key exchange with ephemeral keys. EDHOC provides
mutual authentication, forward secrecy, and identity protection. EDHOC is intended for usage in
constrained scenarios, and a main use case is to establish an Object Security for Constrained
RESTful Environments (OSCORE) security context. By reusing CBOR Object Signing and
Encryption (COSE) for cryptography, Concise Binary Object Representation (CBOR) for encoding,
and Constrained Application Protocol (CoAP) for transport, the additional code size can be kept
very low.

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at https://www.rfc-editor.org/info/rfc9528.

Copyright Notice

Copyright (c) 2024 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions

Selander, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9528
https://www.rfc-editor.org/info/rfc9528
https://trustee.ietf.org/license-info

RFC 9528 EDHOC March 2024

with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

Table of Contents

1. Introduction 5
1.1. Motivation 5
1.2. Message Size Examples 6
1.3. Document Structure 7
1.4. Terminology and Requirements Language 7

2. EDHOC Outline

3. Protocol Elements
3.1. General 9
3.2. Method 10
3.3. Connection Identifiers 11
3.4. Transport 12
3.5. Authentication Parameters 14
3.6. Cipher Suites 18
3.7. Ephemeral Public Keys 20
3.8. External Authorization Data (EAD) 20
3.9. Application Profile 21

4. Key Derivation 23
4.1. Keys for EDHOC Message Processing 23
4.2. Keys for EDHOC Applications 26

5. Message Formatting and Processing 27
5.1. EDHOC Message Processing Outline 27
5.2. EDHOC Message 1 28
5.3. EDHOC Message 2 29
5.4. EDHOC Message 3 31
5.5. EDHOC Message 4 33

Selander, et al. Standards Track Page 2

RFC 9528 EDHOC March 2024

6. Error Handling 35
6.1. Success 36
6.2. Unspecified Error 36
6.3. Wrong Selected Cipher Suite 36
6.4. Unknown Credential Referenced 38

7. EDHOC Message Deduplication 39

8. Compliance Requirements 39

9. Security Considerations 40
9.1. Security Properties 40
9.2. Cryptographic Considerations 43
9.3. Cipher Suites and Cryptographic Algorithms 44
9.4. Post-Quantum Considerations 44
9.5. Unprotected Data and Privacy 45
9.6. Updated Internet Threat Model Considerations 45
9.7. Denial of Service 46
9.8. Implementation Considerations 46

10. JANA Considerations 48
10.1. EDHOC Exporter Label Registry 49
10.2. EDHOC Cipher Suites Registry 49
10.3. EDHOC Method Type Registry 51
10.4. EDHOC Error Codes Registry 51
10.5. EDHOC External Authorization Data Registry 52
10.6. COSE Header Parameters Registry 52
10.7. Well-Known URI Registry 53
10.8. Media Types Registry 53
10.9. CoAP Content-Formats Registry 55
10.10. Resource Type (rt=) Link Target Attribute Values Registry 55
10.11. Expert Review Instructions 55

11. References 56
11.1. Normative References 56

Selander, et al. Standards Track Page 3

RFC 9528 EDHOC March 2024

11.2. Informative References 58
Appendix A. Use with OSCORE and Transfer over CoAP 62
A.1. Deriving the OSCORE Security Context 62
A.2. Transferring EDHOC over CoAP 63
Appendix B. Compact Representation 66
Appendix C. Use of CBOR, CDDL, and COSE in EDHOC 68
C.1. CBOR and CDDL 68
C.2. CDDL Definitions 69
C.3. COSE 70
Appendix D. Authentication-Related Verifications 72
D.1. Validating the Authentication Credential 72
D.2. Identities 72
D.3. Certification Path and Trust Anchors 73
D.4. Revocation Status 74
D.5. Unauthenticated Operation 74
Appendix E. Use of External Authorization Data 74
Appendix F. Application Profile Example 75
Appendix G. Long PLAINTEXT_2 76
Appendix H. EDHOC_KeyUpdate 77
Appendix I. Example Protocol State Machine 78
I.1. Initiator State Machine 78
I.2. Responder State Machine 79
Acknowledgments 81
Authors' Addresses 82

Selander, et al. Standards Track Page 4

RFC 9528 EDHOC March 2024

1. Introduction

1.1. Motivation

Many Internet of Things (IoT) deployments require technologies that are highly performant in
constrained environments [RFC7228]. IoT devices may be constrained in various ways, including
memory, storage, processing capacity, and power. The connectivity for these settings may also
exhibit constraints, such as unreliable and lossy channels, highly restricted bandwidth, and
dynamic topology. The IETF has acknowledged this problem by standardizing a range of
lightweight protocols and enablers designed for the IoT, including CoAP [RFC7252], CBOR
[RFC8949], and Static Context Header Compression (SCHC) [RFC8724].

The need for special protocols targeting constrained IoT deployments extends also to the security
domain [LAKE-REQS]. Important characteristics in constrained environments are the number of
round trips and protocol message sizes, which (if kept low) can contribute to good performance
by enabling transport over a small number of radio frames, reducing latency due to
fragmentation, duty cycles, etc. Another important criterion is code size, which may be
prohibitively large for certain deployments due to device capabilities or network load during
firmware updates. Some IoT deployments also need to support a variety of underlying transport
technologies, potentially even with a single connection.

Some security solutions for such settings exist already. COSE [RFC9052] specifies basic
application-layer security services efficiently encoded in CBOR. Another example is OSCORE
[RFC8613], which is a lightweight communication security extension to CoAP using CBOR and
COSE. In order to establish good quality cryptographic keys for security protocols such as COSE
and OSCORE, the two endpoints may run an authenticated Diffie-Hellman key exchange protocol,
from which shared secret keying material can be derived. Such a key exchange protocol should
also be lightweight to prevent bad performance in case of repeated use, e.g., due to device
rebooting or frequent rekeying for security reasons or to avoid latencies in a network formation
setting with many devices authenticating at the same time.

This document specifies Ephemeral Diffie-Hellman Over COSE (EDHOC), a lightweight
authenticated key exchange protocol providing good security properties including forward
secrecy, identity protection, and cipher suite negotiation. Authentication can be based on raw
public keys (RPKs) or public key certificates and requires the application to provide input on how
to verify that endpoints are trusted. This specification supports the referencing of credentials in
order to reduce message overhead, but credentials may alternatively be embedded in the
messages. EDHOC does not currently support Pre-Shared Key (PSK) authentication as
authentication with static Diffie-Hellman (DH) public keys by reference produces equally small
message sizes but with much simpler key distribution and identity protection.

Selander, et al. Standards Track Page 5

RFC 9528 EDHOC March 2024

EDHOC makes use of known protocol constructions, such as SIGn-and-MAc [SIGMA], the Noise XX
pattern [Noise], and Extract-and-Expand [RFC5869]. EDHOC uses COSE for cryptography and
identification of credentials (including COSE_Key, CBOR Web Token (CWT), CWT Claims Set (CCS),
X.509, and CBOR-encoded X.509 (C509) certificates; see Section 3.5.2). COSE provides crypto agility
and enables the use of future algorithms and credential types targeting IoT.

EDHOC is designed for highly constrained settings, making it especially suitable for low-power
networks [RFC8376] such as Cellular IoT, IPv6 over the TSCH mode of IEEE 802.15.4e (6TiSCH),
and LoRaWAN. A main objective for EDHOC is to be a lightweight authenticated key exchange for
OSCORE, i.e., to provide authentication and session key establishment for IoT use cases such as
those built on CoAP [RFC7252] involving 'things' with embedded microcontrollers, sensors, and
actuators. By reusing the same lightweight primitives as OSCORE (CBOR, COSE, and CoAP), the
additional code size can be kept very low. Note that while CBOR and COSE primitives are built
into the protocol messages, EDHOC is not bound to a particular transport.

A typical setting is when one of the endpoints is constrained or in a constrained network and the
other endpoint is a node on the Internet (such as a mobile phone). Thing-to-thing interactions
over constrained networks are also relevant since both endpoints would then benefit from the
lightweight properties of the protocol. EDHOC could, e.g., be run when a device connects for the
first time or to establish fresh keys that are not revealed by a later compromise of the long-term
keys.

1.2. Message Size Examples

Examples of EDHOC message sizes are shown in Table 1, which use different kinds of
authentication keys and COSE header parameters for identification, including static Diffie-
Hellman keys or signature keys, either in CWT/CCS [RFC8392] identified by a key identifier using
'kid' [RFC9052] or in X.509 certificates identified by a hash value using 'x5t' [RFC9360]. EDHOC
always uses ephemeral-ephemeral key exchange. As a comparison, in the case of RPK
authentication and when transferred in CoAP, the EDHOC message size can be less than 1/7 of the
DTLS 1.3 handshake [RFC9147] with Ephemeral Elliptic Curve Diffie-Hellman (ECDHE) and
connection ID; see [CoAP-SEC-PROT].

Static DH Keys Signature Keys

kid x5t kid x5t
message_1 37 37 37 37
message_2 45 58 102 115
message_3 19 33 77 90
Total 101 128 216 242

Table 1: Examples of EDHOC Message Sizes in Bytes

Selander, et al. Standards Track Page 6

RFC 9528 EDHOC March 2024

1.3. Document Structure

The remainder of the document is organized as follows: Section 2 outlines EDHOC authenticated
with signature keys; Section 3 describes the protocol elements of EDHOC, including formatting of
the ephemeral public keys; Section 4 specifies the key derivation; Section 5 specifies message
processing for EDHOC authenticated with signature keys or static Diffie-Hellman keys; Section 6
describes the error messages; Section 7 describes EDHOC support for transport that does not
handle message duplication; and Section 8 lists compliance requirements. Note that normative
text is also used in appendices, in particular Appendix A.

1.4. Terminology and Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to
be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in
all capitals, as shown here.

Readers are expected to be familiar with the terms and concepts described in CBOR [RFC8949],
CBOR Sequences [RFC8742], COSE Structures and Processing [RFC9052], COSE Algorithms
[RFC9053], CWT and CCS [RFC8392], and the Concise Data Definition Language (CDDL) [RFC8610],
which is used to express CBOR data structures. Examples of CBOR and CDDL are provided in
Appendix C.1. When referring to CBOR, this specification always refers to Deterministically
Encoded CBOR, as specified in Sections 4.2.1 and 4.2.2 of [RFC8949]. The single output from
authenticated encryption (including the authentication tag) is called "ciphertext", following
[RFC5116].

2. EDHOC Outline

EDHOC supports different authentication methods of the ephemeral-ephemeral Diffie-Hellman
key exchange. This document specifies authentication methods based on signature keys and
static Diffie-Hellman keys. This section outlines the signature-key-based method. Further details
of protocol elements and other authentication methods are provided in the remainder of this
document.

SIGn-and-MAc (SIGMA) is a family of theoretical protocols with a number of variants [SIGMA].
Like in Internet Key Exchange Protocol Version 2 (IKEv2) [RFC7296] and (D)TLS 1.3 [RFC8446]
[RFC9147], EDHOC authenticated with signature keys is built on a variant of the SIGMA protocol,
SIGMA-I, which provides identity protection against active attacks on the party initiating the
protocol. Also like IKEv2, EDHOC implements the MAC-then-Sign variant of the SIGMA-I protocol.
The message flow (excluding an optional fourth message) is shown in Figure 1.

Selander, et al. Standards Track Page 7

https://rfc-editor.org/rfc/rfc8949#section-4.2.1
https://rfc-editor.org/rfc/rfc8949#section-4.2.2

RFC 9528 EDHOC March 2024

Initiator Responder
G_X

>

G_Y, Enc(ID_CRED_R, Sig(R; MAC(CRED_R, G_X, G_Y)))

AEAD(ID_CRED_I, Sig(I; MAC(CRED_I, G.Y, G_X)))

Figure 1: MAC-then-Sign Variant of the SIGMA-I Protocol Used by the EDHOC Method 0

The parties exchanging messages in an EDHOC session are called the Initiator (I) and the
Responder (R), where the Initiator sends message_1 (see Section 3). They exchange ephemeral
public keys, compute a shared secret session key PRK_out, and derive symmetric application keys
used to protect application data.

* G_X and G_Y are the Elliptic Curve Diffie-Hellman (ECDH) ephemeral public keys of I and R,
respectively.

* CRED_I and CRED_R are the authentication credentials containing the public authentication
keys of I and R, respectively.

* ID_CRED_I and ID_CRED_R are used to identify and optionally transport the credentials of I
and R, respectively.

* Sig(I; .) and Sig(R; .) denote signatures made with the private authentication key of I and R,
respectively.

* Enc(), AEAD(), and MAC() denote encryption, Authenticated Encryption with Associated Data,
and Message Authentication Code -- crypto algorithms applied with keys derived from one or
more shared secrets calculated during the protocol.

In order to create a "full-fledged" protocol, some additional protocol elements are needed. This
specification adds:

o transcript hashes (hashes of message data), TH_2, TH_3, and TH_4, used for key derivation
and as additional authenticated data,

» computationally independent keys derived from the ECDH shared secret and used for
authenticated encryption of different messages,

¢ an optional fourth message giving key confirmation to I in deployments where no protected
application data is sent from R to I,

* a keying material exporter and a key update function with forward secrecy,
* secure negotiation of the cipher suite,
* method types, error handling, and padding,

* the selection of connection identifiers, C_I and C_R, which may be used in EDHOC to identify
the protocol state, and

Selander, et al. Standards Track Page 8

RFC 9528 EDHOC March 2024

* transport of external authorization data.

EDHOC is designed to encrypt and integrity protect as much information as possible. Symmetric
keys and random material used in EDHOC are derived using EDHOC_KDF with as much previous
information as possible; see Figure 6. EDHOC is furthermore designed to be as compact and
lightweight as possible, in terms of message sizes, processing, and the ability to reuse already
existing CBOR, COSE, and CoAP libraries. Like in (D)TLS, authentication is the responsibility of
the application. EDHOC identifies (and optionally transports) authentication credentials and
provides proof-of-possession of the private authentication key.

To simplify for implementors, the use of CBOR, CDDL, and COSE in EDHOC is summarized in
Appendix C. Test vectors, including CBOR diagnostic notation, are provided in [RFC9529].

3. Protocol Elements

3.1. General

The EDHOC protocol consists of three mandatory messages (message_1, message_2, and
message_3), an optional fourth message (message_4), and an error message, between an Initiator
(I) and a Responder (R). The odd messages are sent by I, the even by R. Both I and R can send
error messages. The roles have slightly different security properties that should be considered
when the roles are assigned; see Section 9.1. All EDHOC messages are CBOR Sequences [RFC8742]
and are defined to be deterministically encoded CBOR as specified in Section 4.2.1 of [RFC8949].
Figure 2 illustrates an EDHOC message flow with the optional fourth message as well as the
content of each message. The protocol elements in the figure are introduced in Sections 3 and 5.
Message formatting and processing are specified in Sections 5 and 6.

Application data may be protected using the agreed application algorithms (AEAD, hash) in the
selected cipher suite (see Section 3.6), and the application can make use of the established
connection identifiers C_I and C_R (see Section 3.3). Media types that may be used for EDHOC are
defined in Section 10.8.

The Initiator can derive symmetric application keys after creating EDHOC message_3; see Section
4.2.1. Protected application data can therefore be sent in parallel or together with EDHOC
message_3. EDHOC message_4 is typically not sent.

Selander, et al. Standards Track Page 9

https://rfc-editor.org/rfc/rfc8949#section-4.2.1

RFC 9528 EDHOC March 2024

Initiator Responder
METHOD, SUITES_I, G_X, C_I, EAD_1
g

message_1

G_Y, Enc(C_R, ID_CRED_R, Signature_or_MAC_2, EAD_2)

message_2

AEAD(ID_CRED_I, Signature_or_MAC_3, EAD_3)

message_3

AEAD(EAD_4)

message_4
Figure 2: EDHOC Message Flow Including the Optional Fourth Message

3.2. Method

The data item METHOD in message_1 (see Section 5.2.1) is an integer specifying the
authentication method. EDHOC currently supports authentication with signature or static Diffie-
Hellman keys, as defined in the four authentication methods: 0, 1, 2, and 3; see Table 2. When
using a static Diffie-Hellman key, the authentication is provided by a Message Authentication
Code (MAC) computed from an ephemeral-static ECDH shared secret that enables significant
reductions in message sizes. Note that, also in the static Diffie-Hellman-based authentication
methods, there is an ephemeral-ephemeral Diffie-Hellman key exchange.

The Initiator and Responder need to have agreed on a single method to be used for EDHOC; see
Section 3.9.

Method Type Value Initiator Authentication Key Responder Authentication Key

0 Signature Key Signature Key

1 Signature Key Static DH Key

2 Static DH Key Signature Key

3 Static DH Key Static DH Key
23 Reserved Reserved

Table 2: Authentication Keys for Method Types

EDHOC does not have a dedicated message field to indicate the protocol version. Breaking
changes to EDHOC can be introduced by specifying and registering new methods.

Selander, et al. Standards Track Page 10

RFC 9528 EDHOC March 2024

3.3. Connection Identifiers

EDHOC includes the selection of connection identifiers (C_I and C_R) identifying a connection for
which keys are agreed.

Connection identifiers may be used to correlate EDHOC messages and facilitate the retrieval of
protocol state during an EDHOC session (see Section 3.4) or may be used in applications of
EDHOC, e.g., in OSCORE (see Section 3.3.3). The connection identifiers do not have any
cryptographic purpose in EDHOC and only facilitate the retrieval of security data associated with
the protocol state.

Connection identifiers in EDHOC are intrinsically byte strings. Most constrained devices only
have a few connections for which short identifiers may be sufficient. In some cases, minimum
length identifiers are necessary to comply with overhead requirements. However, CBOR byte
strings -- with the exception of the empty byte string h", which encodes as one byte (0x40) -- are
encoded as two or more bytes. To enable one-byte encoding of certain byte strings while
maintaining CBOR encoding, EDHOC represents certain identifiers as CBOR integers on the wire;
see Section 3.3.2.

3.3.1. Selection of Connection Identifiers

C_Iand C_R are chosen by I and R, respectively. The Initiator selects C_I and sends it in message_1
for the Responder to use as a reference to the connection in communications with the Initiator.
The Responder selects C_R and sends it in message_2 for the Initiator to use as a reference to the
connection in communications with the Responder.

If connection identifiers are used by an application protocol for which EDHOC establishes keys,
then the selected connection identifiers SHALL adhere to the requirements for that protocol; see
Section 3.3.3 for an example.

3.3.2. Representation of Byte String Identifiers

To allow identifiers with minimal overhead on the wire, certain byte strings used in connection
identifiers and credential identifiers (see Section 3.5.3) are defined to have integer
representations.

The integers with one-byte CBOR encoding are -24, ..., 23; see Figure 3.

Integer: -24 -23 ... -11 ... -2 -1 0 1 ... 15 ... 23
Encoding: 37 36 ... 2A ... 21 20 06 01 ... OF ... 17

Figure 3: One-Byte CBOR-Encoded Integers

The byte strings that coincide with a one-byte CBOR encoding of an integer MUST be represented
by the CBOR encoding of that integer. Other byte strings are simply encoded as CBOR byte
strings.

Selander, et al. Standards Track Page 11

RFC 9528 EDHOC March 2024

For example:

* 0x21 is represented by 0x21 (CBOR encoding of the integer -2), not by 0x4121 (CBOR encoding
of the byte string 0x21).

* 0X0D is represented by 0x0D (CBOR encoding of the integer 13), not by 0x410D (CBOR
encoding of the byte string 0x0D).

* 0x18 is represented by 0x4118 (CBOR encoding of the byte string 0x18).
* 0x38 is represented by 0x4138 (CBOR encoding of the byte string 0x38).
* 0XABCD is represented by 0x42ABCD (CBOR encoding of the byte string 0XABCD).

One may view this representation of byte strings as a transport encoding, i.e., a byte string that
parses as the one-byte CBOR encoding of an integer (i.e., integer in the interval -24, ..., 23) is just
copied directly into the message, and a byte string that does not is encoded as a CBOR byte string
during transport.

Implementation Note: When implementing the byte string identifier representation,
in some programming languages, it can help to define a new type or other data
structure, which (in its user-facing API) behaves like a byte string but when
serializing to CBOR produces a CBOR byte string or a CBOR integer depending on its
value.

3.3.3. Use of Connection Identifiers with OSCORE

For OSCORE, the choice of connection identifier results in the endpoint selecting its Recipient ID
(see Section 3.1 of [RFC8613]) for which certain uniqueness requirements apply (see Section 3.3
of [RFC8613]). Therefore, the Initiator and Responder MUST NOT select connection identifiers
such that it results in the same OSCORE Recipient ID. Since the connection identifier is a byte
string, it is converted to an OSCORE Recipient ID equal to the byte string.

Examples:

* A connection identifier OXFF (represented in the EDHOC message as 0x41FF; see Section
3.3.2) is converted to the OSCORE Recipient ID OXFF.

* A connection identifier 0x21 (represented in the EDHOC message as 0x21; see Section 3.3.2) is
converted to the OSCORE Recipient ID 0x21.

3.4. Transport

Cryptographically, EDHOC does not put requirements on the underlying layers. Received
messages are processed as the expected next message according to the protocol state; see Section
5. If processing fails for any reason, then typically an error message is attempted to be sent and
the EDHOC session is aborted.

Selander, et al. Standards Track Page 12

https://rfc-editor.org/rfc/rfc8613#section-3.1
https://rfc-editor.org/rfc/rfc8613#section-3.3

RFC 9528 EDHOC March 2024

EDHOC is not bound to a particular transport layer and can even be used in environments
without IP. Ultimately, the application is free to choose how to transport EDHOC messages
including errors. In order to avoid unnecessary message processing or protocol termination, it is
RECOMMENDED to use reliable transport, such as CoAP in reliable mode, which is the default
transport; see Appendix A.2. In general, the transport SHOULD handle:

* message loss,

» message duplication (see Section 7 for an alternative),

« flow control,

* congestion control,

* fragmentation and reassembly,

» demultiplexing EDHOC messages from other types of messages,
* denial-of-service mitigation, and

* message correlation (see Section 3.4.1).

EDHOC does not require error-free transport since a change in message content is detected
through the transcript hashes in a subsequent integrity verification; see Section 5. The transport
does not require additional means to handle message reordering because of the lockstep
processing of EDHOC.

EDHOC is designed to enable an authenticated key exchange with small messages, where the
minimum message sizes are of the order illustrated in the first column of Table 1. There is no
maximum message size specified by the protocol; for example, this is dependent on the size of
the authentication credentials (if they are transported, see Section 3.5). The encryption of very
large content in message_2 when using certain hash algorithms is described in Appendix G.

The use of transport is specified in the application profile, which in particular, may specify
limitations in message sizes; see Section 3.9.

3.4.1. EDHOC Message Correlation

Correlation between EDHOC messages is needed to facilitate the retrieval of the protocol state
and security context during an EDHOC session. It is also helpful for the Responder to get an
indication that a received EDHOC message is the beginning of a new EDHOC session, such that no
existing protocol state or security context needs to be retrieved.

Correlation may be based on existing mechanisms in the transport protocol; for example, the
CoAP Token may be used to correlate EDHOC messages in a CoAP response and in an associated
CoAP request. The connection identifiers may also be used to correlate EDHOC messages.

If correlation between consecutive messages is not provided by other means, then the transport
binding SHOULD mandate prepending of an appropriate connection identifier (when available
from the EDHOC protocol) to the EDHOC message. If message_1 indication is not provided by
other means, then the transport binding SHOULD mandate prepending of message_1 with the
CBOR simple value true (0xf5).

Selander, et al. Standards Track Page 13

RFC 9528 EDHOC March 2024

Transport of EDHOC in CoAP payloads is described in Appendix A.2, including how to use
connection identifiers and message_1 indication with CoAP. A similar construction is possible for
other client-server protocols. Protocols that do not provide any correlation at all can prescribe
prepending of the peer's connection identifier to all messages.

Note that correlation between EDHOC messages may be obtained without transport support or
connection identifiers, for example, if the endpoints only accept a single instance of the protocol
at a time and execute conditionally on a correct sequence of messages.

3.5. Authentication Parameters

EDHOC supports various settings for how the other endpoint's public key for authentication may
be transported, identified, and trusted. We shall use the term "authentication key" to mean key
used for authentication in general, or specifically, the public key, when there is no risk for
confusion.

EDHOC performs the following authentication-related operations:

* EDHOC transports information about credentials in ID_CRED_I and ID_CRED_R (described in
Section 3.5.3). Based on this information, the authentication credentials CRED_I and CRED_R
(described in Section 3.5.2) can be obtained. EDHOC may also transport certain
authentication-related information as external authorization data (see Section 3.8).

* EDHOC uses the authentication credentials in two ways (see Sections 5.3.2 and 5.4.2):

- The authentication credential is input to the integrity verification using the MAC fields.

- The authentication key of the authentication credential is used with the Signature_or_MAC
field to verify proof-of-possession of the private key.

Other authentication-related verifications are out of scope for EDHOC and are the responsibility
of the application. In particular, the authentication credential needs to be validated in the
context of the connection for which EDHOC is used; see Appendix D. EDHOC MUST allow the
application to read received information about credentials in ID_CRED_R and ID_CRED_I. EDHOC
MUST have access to the authentication key and the authentication credential.

Note that the type of authentication key, the type of authentication credential, and the
identification of the credential have a large impact on the message size. For example, the
Signature_or_MAC field is much smaller with a static DH key than with a signature key. A CWT
Claims Set (CCS) is much smaller than a self-signed certificate / CWT, but if it is possible to
reference the credential with a COSE header like 'kid', then that is in turn much smaller than a
CCs.

3.5.1. Authentication Keys

The authentication key MUST be a signature key or a static Diffie-Hellman key. The Initiator and
Responder MAY use different types of authentication keys, e.g., one uses a signature key and the
other uses a static Diffie-Hellman key.

Selander, et al. Standards Track Page 14

RFC 9528 EDHOC March 2024

The authentication key algorithm needs to be compatible with the method and the selected
cipher suite (see Section 3.6). The authentication key algorithm needs to be compatible with the
EDHOC key exchange algorithm when static Diffie-Hellman authentication is used and
compatible with the EDHOC signature algorithm when signature authentication is used.

Note that for most signature algorithms, the signature is determined jointly by the signature
algorithm and the authentication key algorithm. When using static Diffie-Hellman keys, the
Initiator's and the Responder's private authentication keys are denoted as I and R, respectively,
and the public authentication keys are denoted G_I and G_R, respectively.

For X.509 certificates, the authentication key is represented by a SubjectPublicKeyInfo field,
which also contains information about authentication key algorithm. For CWT and CCS (see
Section 3.5.2), the authentication key is represented by a 'cnf’ claim [RFC8747] containing a
COSE_Key [RFC9052], which contains information about authentication key algorithm. In EDHOC,
a raw public key (RPK) is an authentication key encoded as a COSE_Key wrapped in a CCS, an
example is given in Figure 4.

3.5.2. Authentication Credentials

The authentication credentials, CRED_I and CRED_R, contain the public authentication key of the
Initiator and Responder, respectively. We use the notation CRED_x to refer to CRED_I or CRED_R.
Requirements on CRED_x applies both to CRED_I and to CRED_R. The authentication credential
typically also contains other parameters that needs to be verified by the application (see
Appendix D) and in particular information about the identity ("subject") of the endpoint to
prevent misbhinding attacks (see Appendix D.2).

EDHOC relies on COSE for identification of credentials (see Section 3.5.3), for example, X.509
certificates [RFC9360], C509 certificates [C509-CERTS], CWTs [RFC8392], and CCSs [RFC8392].
When the identified credential is a chain or a bag, the authentication credential CRED_X is just
the end entity X.509 or C509 certificate / CWT. In the choice between a chain or a bag, it is
RECOMMENDED to use a chain, since the certificates in a bag are unordered and may contain self-
signed and extraneous certificates, which can add complexity to the process of extracting the end
entity certificate. The Initiator and Responder MAY use different types of authentication
credentials, e.g., one uses an RPK and the other uses a public key certificate.

Since CRED_R is used in the integrity verification (see Section 5.3.2), it needs to be specified such
that it is identical when used by the Initiator or Responder. Similarly for CRED_I, see Section
5.4.2. The Initiator and Responder are expected to agree on the specific encoding of the
authentication credentials; see Section 3.9. It is RECOMMENDED that the COSE 'kid' parameter,
when used to identify the authentication credential, refers to such a specific encoding of the
authentication credential. The Initiator and Responder SHOULD use an available authentication
credential without re-encoding, i.e. an authentication credential transported in EDHOC by value,
or otherwise provisioned, SHOULD be used as is. If for some reason re-encoding of an

Selander, et al. Standards Track Page 15

RFC 9528 EDHOC March 2024

authentication credential passed by reference may occur, then a potential common encoding for
CBOR-based credentials is deterministically encoded CBOR, as specified in Sections 4.2.1 and 4.2.2
of [RFC8949].

*» When the authentication credential is an X.509 certificate, CRED_x SHALL be the DER-
encoded certificate, encoded as a bstr [RFC9360].

* When the authentication credential is a C509 certificate, CRED_x SHALL be the C509
certificate [C509-CERTS].

* When the authentication credential is a CWT including a COSE_Key, CRED_x SHALL be the
untagged CWT.

* When the authentication credential includes a COSE_Key but is not in a CWT, CRED_x SHALL
be an untagged CCS. This is how RPKs are encoded, see Figure 4 for an example.

> Naked COSE_Keys are thus dressed as CCS when used in EDHOG, in its simplest form by
prefixing the COSE_Key with 0xA108A101 (a map with a 'enf" claim). In that case, the
resulting authentication credential contains no other identity than the public key itself; see
Appendix D.2.

An example of CRED_x is shown below:

{ /CCS/
2 : "42-50-31-FF-EF-37-32-39", /sub/
8 : { /cnf/

1 { /COSE_Key/
1 : 1, /kty/
2 : h'eo', /kid/
-1 : 4 /crv/

-2 h:b1a3e89460e88d3a8d54211dc95f0b9@ /x/
3ff205eb71912d6db8f4af980d2db83a’

Figure 4: CCS Containing an X25519 Static Diffie-Hellman Key and an EUI-64 Identity

3.5.3. Identification of Credentials

The ID_CRED fields, ID_CRED_R and ID_CRED_], are transported in message_2 and message_3,
respectively; see Sections 5.3.2 and 5.4.2. We use the notation ID_CRED_x to refer to ID_CRED_I or
ID_CRED_R. Requirements on ID_CRED_x applies both to ID_CRED_I and to ID_CRED_R. The
ID_CRED fields are used to identify and optionally transport credentials:

* ID_CRED_R is intended to facilitate for the Initiator retrieving the authentication credential
CRED_R and the authentication key of R.

* ID_CRED_I is intended to facilitate for the Responder retrieving the authentication credential
CRED_I and the authentication key of I.

Selander, et al. Standards Track Page 16

https://rfc-editor.org/rfc/rfc8949#section-4.2.1
https://rfc-editor.org/rfc/rfc8949#section-4.2.2

RFC 9528 EDHOC March 2024

ID_CRED_x may contain the authentication credential CRED_x, for x = I or R, but for many
settings, it is not necessary to transport the authentication credential within EDHOC. For
example, it may be pre-provisioned or acquired out-of-band over less constrained links.
ID_CRED_I and ID_CRED_R do not have any cryptographic purpose in EDHOC since the
authentication credentials are integrity protected by the Signature_or_MAC field.

EDHOC relies on COSE for identification of credentials and supports all credential types for
which COSE header parameters are defined, including X.509 certificates [RFC9360], C509
certificates [C509-CERTS], CWTs (Section 3.5.3.1) and CCSs (Section 3.5.3.1).

ID_CRED_I and ID_CRED_R are of type COSE header_map, as defined in Section 3 of [RFC9052],
and contain one or more COSE header parameters. If a map contains several header parameters,
the labels do not need to be sorted in bytewise lexicographic order. ID_CRED_I and ID_CRED_R
MAY contain different header parameters. The header parameters typically provide some
information about the format of the credential.

Example: X.509 certificates can be identified by a hash value using the 'x5t' parameter; see
Section 2 of [RFC9360]:

ID CRED x={34:COSE_CertHash }, forx=Ior R

Example: CWT or CCS can be identified by a key identifier using the 'kid' parameter; see Section
3.1 of [RFC9052]:

*ID CRED x={4:kid _x}, where kid_x: kid, forx=Ior R

Note that COSE header parameters in ID_CRED_x are used to identify the message sender's
credential. Therefore, there is no reason to use the "-sender" header parameters, such as x5t-
sender, defined in Section 3 of [RFC9360]. Instead, the corresponding parameter without "-
sender", such as x5t, SHOULD be used.

As stated in Section 3.1 of [RFC9052], applications MUST NOT assume that 'kid' values are unique
and several keys associated with a 'kid' may need to be checked before the correct one is found.
Applications might use additional information such as 'kid context' or lower layers to determine
which key to try first. Applications should strive to make ID_CRED_x as unique as possible, since
the recipient may otherwise have to try several keys.

See Appendix C.3 for more examples.

3.5.3.1. COSE Header Parameters for CWT and CWT Claims Set

This document registers two new COSE header parameters, 'kewt' and 'kecs', for use with CBOR
Web Token (CWT) [RFC8392] and CWT Claims Set (CCS) [RFC8392], respectively. The CWT/CCS
MUST contain a COSE_Key in a 'cnf" claim [RFC8747]. There may be any number of additional
claims present in the CWT/CCS.

Selander, et al. Standards Track Page 17

https://rfc-editor.org/rfc/rfc9052#section-3
https://rfc-editor.org/rfc/rfc9360#section-2
https://rfc-editor.org/rfc/rfc9052#section-3.1
https://rfc-editor.org/rfc/rfc9052#section-3.1
https://rfc-editor.org/rfc/rfc9360#section-3
https://rfc-editor.org/rfc/rfc9052#section-3.1

RFC 9528 EDHOC March 2024

CWTs sent in 'kcwt' are protected using a MAC or a signature and are similar to a certificate
(when used with public key cryptography) or a Kerberos ticket (when used with symmetric key
cryptography). CCSs sent in 'kccs' are not protected and are therefore similar to raw public keys
or self-signed certificates.

Security considerations for 'kcwt' and 'kces' are made in Section 9.8.

3.5.3.2. Compact Encoding of ID_CRED Fields for 'kid'

To comply with the Lightweight Authenticated Key Exchange (LAKE) message size requirements
(see [LAKE-REQS]), two optimizations are made for the case when ID_CRED_x, forx =T or R,
contains a single 'kid' parameter.

1. The CBOR map { 4 : kid_x } is replaced by the byte string kid_x.
2. The representation of identifiers specified in Section 3.3.2 is applied to kid_x.

These optimizations MUST be applied if and only if ID_CRED_x = {4 : kid_x } and ID_CRED_x in
PLAINTEXT y of message_y, y = 2 or 3; see Sections 5.3.2 and 5.4.2. Note that these optimizations
are not applied to instances of ID_CRED_x that have no impact on message size, e.g., context_y, or
the COSE protected header. For example:

e For ID_CRED_x = { 4 : h'FF' }, the encoding in PLAINTEXT_y is not the CBOR map 0xA10441FF
but the CBOR byte string h'FF', i.e., 0x41FF.

e For ID_CRED_x ={4:h'21'}, the encoding in PLAINTEXT _y is neither the CBOR map
0xA1044121 nor the CBOR byte string h'21', i.e., 0x4121, but the CBOR integer 0x21.

3.6. Cipher Suites

An EDHOC cipher suite consists of an ordered set of algorithms from the "COSE Algorithms" and
"COSE Elliptic Curves" registries as well as the EDHOC MAC length. All algorithm names and
definitions follow COSE Algorithms [RFC9053]. Note that COSE sometimes uses peculiar names
such as ES256 for Elliptic Curve Digital Signature Algorithm (ECDSA) with SHA-256, A128 for
AES-128, and Ed25519 for the curve edwards25519. Algorithms need to be specified with enough
parameters to make them completely determined. The EDHOC MAC length MUST be at least 8
bytes. Any cryptographic algorithm used in the COSE header parameters in ID_CRED fields is
selected independently of the selected cipher suite. EDHOC is currently only specified for use
with key exchange algorithms of type ECDH curves, but any Key Encapsulation Mechanism
(KEM), including Post-Quantum Cryptography (PQC) KEMs, can be used in method 0; see Section
9.4. Use of other types of key exchange algorithms to replace static DH authentication (methods 1,
2, and 3) would likely require a specification updating EDHOC with new methods.

EDHOC supports all signature algorithms defined by COSE. Just like in (D)TLS 1.3 [RFC8446]
[RFC9147] and IKEv2 [RFC7296], a signature in COSE is determined jointly by the signature
algorithm and the authentication key algorithm; see Section 3.5.1. The exact details of the
authentication key algorithm depend on the type of authentication credential. COSE supports

Selander, et al. Standards Track Page 18

RFC 9528 EDHOC March 2024

different formats for storing the public authentication keys including COSE_Key and X.509, which
use different names and ways to represent the authentication key and the authentication key
algorithm.

An EDHOC cipher suite consists of the following parameters:

*« EDHOC AEAD algorithm,

* EDHOC hash algorithm,

*« EDHOC MAC length in bytes (Static DH),

* EDHOC key exchange algorithm (ECDH curve),
* EDHOC signature algorithm,

* application AEAD algorithm, and

* application hash algorithm.

Each cipher suite is identified with a predefined integer label.

EDHOC can be used with all algorithms and curves defined for COSE. Implementations can either
use any combination of COSE algorithms and parameters to define their own private cipher suite
or use one of the predefined cipher suites. Private cipher suites can be identified with any of the
four values: -24, -23, -22, and -21. The predefined cipher suites are listed in the IANA registry
(Section 10.2) with the initial content outlined here:

* Cipher suites 0-3, based on AES-CCM, are intended for constrained IoT where message
overhead is a very important factor. Note that AES-CCM-16-64-128 and AES-CCM-16-128-128
are compatible with the IEEE AES-CCM* mode of operation defined in Annex B of [I[EEE.
802.15.4-2015].

o Cipher suites 1 and 3 use a larger tag length (128 bits) in EDHOC than in the application
AEAD algorithm (64 bits).

* Cipher suites 4 and 5, based on ChaCha20, are intended for less constrained applications and
only use 128-bit tag lengths.

* Cipher suite 6, based on AES-GCM, is for general non-constrained applications. It consists of
high-performance algorithms that are widely used in non-constrained applications.

* Cipher suites 24 and 25 are intended for high security applications such as government use
and financial applications. These cipher suites do not share any algorithms. Cipher suite 24
consists of algorithms from the Commercial National Security Algorithm (CNSA) 1.0 suite
[CNSA].

The different methods (Section 3.2) use the same cipher suites, but some algorithms are not used
in some methods. The EDHOC signature algorithm is not used in methods without signature
authentication.

The Initiator needs to have a list of cipher suites it supports in order of preference. The
Responder needs to have a list of cipher suites it supports. SUITES_I contains cipher suites
supported by the Initiator and formatted and processed as detailed in Section 5.2.1 to secure the
cipher suite negotiation. Examples of cipher suite negotiation are given in Section 6.3.2.

Selander, et al. Standards Track Page 19

RFC 9528 EDHOC March 2024

3.7. Ephemeral Public Keys

The ephemeral public keys in EDHOC (G_X and G_Y) use compact representation of elliptic curve
points; see Appendix B. In COSE, compact representation is achieved by formatting the ECDH
ephemeral public keys as COSE_Keys of type EC2 or Octet Key Pair (OKP) according to Sections 7.1
and 7.2 of [RFC9053] but only including the 'x' parameter in G_X and G_Y. For Elliptic Curve Keys
of type EC2, compact representation MAY be used also in the COSE_Key. COSE always uses
compact output for Elliptic Curve Keys of type EC2. If the COSE implementation requires a 'y’
parameter, the value y = false or a calculated y-coordinate can be used; see Appendix B.

3.8. External Authorization Data (EAD)

In order to reduce round trips and the number of messages or to simplify processing, external
security applications may be integrated into EDHOC by transporting authorization-related data
in the messages.

EDHOC allows processing of external authorization data (EAD) to be defined in a separate
specification and sent in dedicated fields of the four EDHOC messages: EAD_1, EAD_2, EAD_3, and
EAD_4. EAD is opaque data to EDHOC.

Each EAD field, EAD_x, for x =1, 2, 3, or 4, is a CBOR sequence (see Appendix C.1) consisting of
one or more EAD items. EAD item ead is a CBOR sequence of an ead_label and an optional
ead_value; see Figure 5 and Appendix C.2 for the CDDL definitions.

ead = (
ead_label : int,
? ead_value : bstr,

)

Figure 5: EAD Item

A security application may register one or more EAD labels (see Section 10.5) and specify the
associated processing and security considerations. The IANA registry contains the absolute value
of the ead_label, |ead_label|; the same ead_value applies independently of the sign of the
ead_label.

An EAD item can be either critical or non-critical, determined by the sign of the ead_label in the
EAD item transported in the EAD field. A negative value indicates that the EAD item is critical,
and a nonnegative value indicates that the EAD item is non-critical.

If an endpoint receives a critical EAD item it does not recognize or a critical EAD item that
contains information that it cannot process, then the endpoint MUST send an EDHOC error
message back as defined in Section 6, and the EDHOC session MUST be aborted. The EAD item
specification defines the error processing. A non-critical EAD item can be ignored.

Selander, et al. Standards Track Page 20

https://rfc-editor.org/rfc/rfc9053#section-7.1
https://rfc-editor.org/rfc/rfc9053#section-7.2

RFC 9528 EDHOC March 2024

The security application registering a new EAD item needs to describe under what conditions the
EAD item is critical or non-critical, and thus whether the ead_label is used with a negative or
positive sign. ead_label = 0 is used for padding; see Section 3.8.1.

The security application may define multiple uses of certain EAD items, e.g., the same EAD item
may be used in different EDHOC messages. Multiple occurrences of an EAD item in one EAD field
may also be specified, but the criticality of the repeated EAD item is expected to be the same.

The EAD fields of EDHOC MUST only be used with registered EAD items; see Section 10.5.
Examples of the use of EAD are provided in Appendix E.

3.8.1. Padding

EDHOC message_1 and the plaintext of message_2, message_3, and message_4 can be padded
with the use of the corresponding EAD_x field, for x = 1, 2, 3, or 4. Padding in EAD_1 mitigates
amplification attacks (see Section 9.7), and padding in EAD_2, EAD_3, and EAD_4 hides the true
length of the plaintext (see Section 9.6). Padding MUST be ignored and discarded by the receiving
application.

Padding is obtained by using an EAD item with ead_label = 0 and a (pseudo)randomly generated
byte string of appropriate length as ead_value, noting that the ead_label and the CBOR encoding
of ead_value also add bytes. For example:

* One-byte padding (optional ead_value omitted):
EAD_x = 0x00

* Two-byte padding, using the empty byte string (0x40) as ead_value:
EAD_x = 0x0040

* Three-byte padding, constructed from the pseudorandomly generated ead_value 0xe9
encoded as byte string:

EAD x =0x0041e9

Multiple occurrences of EAD items with ead_label = 0 are allowed. Certain padding lengths
require the use of at least two such EAD items.

Note that padding is non-critical because the intended behavior when receiving is to ignore it.

3.9. Application Profile

EDHOC requires certain parameters to be agreed upon between the Initiator and Responder.
Some parameters can be negotiated through the protocol execution (specifically, cipher suite; see
Section 3.6), but other parameters are only communicated and may not be negotiated (e.g., which
authentication method is used; see Section 3.2). Yet, other parameters need to be known out-of-
band to ensure successful completion, e.g., whether message_4 is used or not. The application
decides which endpoint is the Initiator and which is the Responder.

Selander, et al. Standards Track Page 21

RFC 9528 EDHOC March 2024

The purpose of an application profile is to describe the intended use of EDHOC to allow for the
relevant processing and verifications to be made, including things like the following:

1. How the endpoint detects that an EDHOC message is received. This includes how EDHOC
messages are transported, for example, in the payload of a CoAP message with a certain Uri-
Path or Content-Format; see Appendix A.2.

The method of transporting EDHOC messages may also describe data carried along with the
messages that are needed for the transport to satisfy the requirements of Section 3.4, e.g.,
connection identifiers used with certain messages; see Appendix A.2.

2. Authentication method (METHOD; see Section 3.2).

3. Profile for authentication credentials (CRED_I and CRED_R; see Section 3.5.2), e.g., profile for
certificate or CCS, including supported authentication key algorithms (subject public key
algorithm in X.509 or C509 certificate).

4. Type used to identify credentials (ID_CRED_I and ID_CRED_R; see Section 3.5.3).

5. Use and type of external authorization data (EAD_1, EAD_2, EAD_3, and EAD_4; see Section
3.8).

6. Identifier used as the identity of the endpoint; see Appendix D.2.

7. If message_4 shall be sent/expected, and if not, how to ensure a protected application
message is sent from the Responder to the Initiator; see Section 5.5.

The application profile may also contain information about supported cipher suites. The
procedure for selecting and verifying a cipher suite is still performed as described in Sections
5.2.1 and 6.3, but it may become simplified by this knowledge. EDHOC messages can be processed
without the application profile, i.e., the EDHOC messages include information about the type and
length of all fields.

An example of an application profile is shown in Appendix F.

For some parameters, like METHOD, the type of the ID_CRED field, or EAD, the receiver of an
EDHOC message is able to verify compliance with the application profile and, if it needs to fail
because of the lack of compliance, to infer the reason why the EDHOC session failed.

For other encodings, like the profiling of CRED_x in the case that it is not transported, it may not
be possible to verify that the lack of compliance with the application profile was the reason for
failure. For example, integrity verification in message_2 or message_3 may fail not only because
of a wrong credential. For example, in case the Initiator uses a public key certificate by reference
(i.e., not transported within the protocol), then both endpoints need to use an identical data
structure as CRED_I or else the integrity verification will fail.

Note that it is not necessary for the endpoints to specify a single transport for the EDHOC
messages. For example, a mix of COAP and HTTP may be used along the path, and this may still
allow correlation between messages.

Selander, et al. Standards Track Page 22

RFC 9528 EDHOC March 202