
RFC 9230
Oblivious DNS over HTTPS

Abstract
This document describes a protocol that allows clients to hide their IP addresses from DNS
resolvers via proxying encrypted DNS over HTTPS (DoH) messages. This improves privacy of DNS
operations by not allowing any one server entity to be aware of both the client IP address and the
content of DNS queries and answers.

This experimental protocol has been developed outside the IETF and is published here to guide
implementation, ensure interoperability among implementations, and enable wide-scale
experimentation.

Stream:
RFC:
Category:
Published:
ISSN:
Authors:

Independent Submission
9230
Experimental
June 2022
2070-1721

 E. Kinnear
Apple Inc.

P. McManus
Fastly

T. Pauly
Apple Inc.

T. Verma
Cloudflare

C.A. Wood
Cloudflare

Status of This Memo
This document is not an Internet Standards Track specification; it is published for examination,
experimental implementation, and evaluation.

This document defines an Experimental Protocol for the Internet community. This is a
contribution to the RFC Series, independently of any other RFC stream. The RFC Editor has chosen
to publish this document at its discretion and makes no statement about its value for
implementation or deployment. Documents approved for publication by the RFC Editor are not
candidates for any level of Internet Standard; see Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9230

Copyright Notice
Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights
reserved.

Kinnear, et al. Experimental Page 1

https://www.rfc-editor.org/rfc/rfc9230
https://www.rfc-editor.org/info/rfc9230

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document.

https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

1.1. Specification of Requirements

2. Terminology

3. Deployment Requirements

4. HTTP Exchange

4.1. HTTP Request

4.2. HTTP Request Example

4.3. HTTP Response

4.4. HTTP Response Example

4.5. HTTP Metadata

5. Configuration and Public Key Format

6. Protocol Encoding

6.1. Message Format

6.2. Encryption and Decryption Routines

7. Oblivious Client Behavior

8. Oblivious Target Behavior

9. Compliance Requirements

10. Experiment Overview

11. Security Considerations

11.1. Denial of Service

11.2. Proxy Policies

11.3. Authentication

12. IANA Considerations

12.1. Oblivious DoH Message Media Type

RFC 9230 Oblivious DoH June 2022

Kinnear, et al. Experimental Page 2

https://trustee.ietf.org/license-info

13. References

13.1. Normative References

13.2. Informative References

Appendix A. Use of Generic Proxy Services

Acknowledgments

Authors' Addresses

1. Introduction
DNS over HTTPS (DoH) defines a mechanism to allow DNS messages to be transmitted
in HTTP messages protected with TLS. This provides improved confidentiality and authentication
for DNS interactions in various circumstances.

While DoH can prevent eavesdroppers from directly reading the contents of DNS exchanges,
clients cannot send DNS queries to and receive answers from servers without revealing their
local IP address (and thus information about the identity or location of the client) to the server.

Proposals such as Oblivious DNS increase privacy by ensuring that no single
DNS server is aware of both the client IP address and the message contents.

This document defines Oblivious DoH, an experimental protocol built on DoH that permits
proxied resolution, in which DNS messages are encrypted so that no server can independently
read both the client IP address and the DNS message contents.

As with DoH, DNS messages exchanged over Oblivious DoH are fully formed DNS messages.
Clients that want to receive answers that are relevant to the network they are on without
revealing their exact IP address can thus use the EDNS0 Client Subnet option (

) to provide a hint to the resolver using Oblivious DoH.

This mechanism is intended to be used as one mechanism for resolving privacy-sensitive content
in the broader context of DNS privacy.

This experimental protocol has been developed outside the IETF and is published here to guide
implementation, ensure interoperability among implementations, and enable wide-scale
experimentation. See Section 10 for more details about the experiment.

[RFC8484]

[OBLIVIOUS-DNS]

[RFC7871], Section
7.1.2

1.1. Specification of Requirements
The key words " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", and " " in this document are to be
interpreted as described in BCP 14 when, and only when, they appear in all
capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD NOT
RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

RFC 9230 Oblivious DoH June 2022

Kinnear, et al. Experimental Page 3

https://www.rfc-editor.org/rfc/rfc7871#section-7.1.2
https://www.rfc-editor.org/rfc/rfc7871#section-7.1.2

Oblivious Client:

Oblivious Proxy:

Oblivious Target:

2. Terminology
This document defines the following terms:

A client that sends DNS queries to an Oblivious Target, through an Oblivious
Proxy. The Client is responsible for selecting the combination of Proxy and Target to use for a
given query.

An HTTP server that proxies encrypted DNS queries and responses between an
Oblivious Client and an Oblivious Target and is identified by a URI Template (see
Section 4.1). Note that this Oblivious Proxy is not acting as a full HTTP proxy but is instead a
specialized server used to forward Oblivious DNS messages.

An HTTP server that receives and decrypts encrypted Oblivious Client DNS
queries from an Oblivious Proxy and returns encrypted DNS responses via that same Proxy. In
order to provide DNS responses, the Target can be a DNS resolver, be co-located with a
resolver, or forward to a resolver.

Throughout the rest of this document, we use the terms "Client", "Proxy", and "Target" to refer to
an Oblivious Client, Oblivious Proxy, and Oblivious Target, respectively.

[RFC6570]

3. Deployment Requirements
Oblivious DoH requires, at a minimum:

An Oblivious Proxy server, identified by a URI Template.
An Oblivious Target server. The Target and Proxy are expected to be non-colluding (see
Section 11).
One or more Target public keys for encrypting DNS queries sent to a Target via a Proxy
(Section 5). These keys guarantee that only the intended Target can decrypt Client queries.

The mechanism for discovering and provisioning the Proxy URI Template and Target public keys
is out of scope for this document.

•
•

•

4. HTTP Exchange
Unlike direct resolution, oblivious hostname resolution over DoH involves three parties:

The Client, which generates queries.
The Proxy, which receives encrypted queries from the Client and passes them on to a Target.
The Target, which receives proxied queries from the Client via the Proxy and produces
proxied answers.

1.
2.
3.

RFC 9230 Oblivious DoH June 2022

Kinnear, et al. Experimental Page 4

Figure 1: Oblivious DoH Exchange

 --- [Request encrypted with Target public key] -->
+---------+ +-----------+ +-----------+
| Client +-------------> Oblivious +-------------> Oblivious |
| <-------------+ Proxy <-------------+ Target |
+---------+ +-----------+ +-----------+
 <-- [Response encrypted with symmetric key] ---

4.1. HTTP Request
Oblivious DoH queries are created by the Client and are sent to the Proxy as HTTP requests using
the POST method. Clients are configured with a Proxy URI Template and the Target URI.
The scheme for both the Proxy URI Template and the Target URI be "https". The Proxy URI
Template uses the Level 3 encoding defined in and contains two
variables: "targethost", which indicates the hostname of the Target server; and "targetpath",
which indicates the path on which the Target is accessible. Examples of Proxy URI Templates are
shown below:

The URI Template contain both the "targethost" and "targetpath" variables exactly once
and contain any other variables. The variables be within the path or query
components of the URI. Clients ignore configurations that do not conform to this template.
See Section 4.2 for an example request.

Oblivious DoH messages have no cache value, since both requests and responses are encrypted
using ephemeral key material. Requests and responses be cached.

Clients set the HTTP Content-Type header to "application/oblivious-dns-message" to
indicate that this request is an Oblivious DoH query intended for proxying. Clients also
set this same value for the HTTP Accept header.

A correctly encoded request has the HTTP Content-Type header "application/oblivious-dns-
message", uses the HTTP POST method, and contains "targethost" and "targetpath" variables. If
the Proxy fails to match the "targethost" and "targetpath" variables from the path, it treat
the request as malformed. The Proxy constructs the URI of the Target with the "https" scheme,
using the value of "targethost" as the URI host and the percent-decoded value of "targetpath" as
the URI path. Proxies check that Client requests are correctly encoded and return a
4xx (Client Error) if the check fails, along with the Proxy-Status response header with an "error"
parameter of type "http_request_error" .

Proxies choose to not forward connections to non-standard ports. In such cases, Proxies can
indicate the error with a 403 response status code, along with a Proxy-Status response header with
an "error" parameter of type "http_request_denied" and with an appropriate explanation in
"details".

[RFC6570]
MUST

Section 1.2 of [RFC6570]

https://dnsproxy.example/dns-query{?targethost,targetpath}
https://dnsproxy.example/{targethost}/{targetpath}

MUST
MUST NOT MUST

MUST

MUST NOT

MUST
SHOULD

MUST

MUST MUST

[RFC9209]

MAY

RFC 9230 Oblivious DoH June 2022

Kinnear, et al. Experimental Page 5

https://www.rfc-editor.org/rfc/rfc6570#section-1.2

If the Proxy cannot establish a connection to the Target, it can indicate the error with a 502
response status code, along with a Proxy-Status response header with an "error" parameter whose
type indicates the reason. For example, if DNS resolution fails, the error type might be
"dns_timeout", whereas if the TLS connection fails, the error type might be "tls_protocol_error".

Upon receipt of requests from a Proxy, Targets validate that the request has the HTTP
Content-Type header "application/oblivious-dns-message" and uses the HTTP POST method.
Targets can respond with a 4xx response status code if this check fails.

MUST

4.2. HTTP Request Example
The following example shows how a Client requests that a Proxy, "dnsproxy.example", forward an
encrypted message to "dnstarget.example". The URI Template for the Proxy is "https://
dnsproxy.example/dns-query{?targethost,targetpath}". The URI for the Target is "https://
dnstarget.example/dns-query".

The Proxy then sends the following request on to the Target:

:method = POST
:scheme = https
:authority = dnsproxy.example
:path = /dns-query?targethost=dnstarget.example&targetpath=/dns-query
accept = application/oblivious-dns-message
content-type = application/oblivious-dns-message
content-length = 106

<Bytes containing an encrypted Oblivious DNS query>

:method = POST
:scheme = https
:authority = dnstarget.example
:path = /dns-query
accept = application/oblivious-dns-message
content-type = application/oblivious-dns-message
content-length = 106

<Bytes containing an encrypted Oblivious DNS query>

4.3. HTTP Response
The response to an Oblivious DoH query is generated by the Target. It set the Content-Type
HTTP header to "application/oblivious-dns-message" for all successful responses. The body of the
response contains an encrypted DNS message; see Section 6.

The response from a Target set the Content-Type HTTP header to "application/oblivious-
dns-message", and that same type be used on all successful responses sent by the Proxy to
the Client. A Client only consider a response that contains the Content-Type header before

MUST

MUST
MUST

MUST

RFC 9230 Oblivious DoH June 2022

Kinnear, et al. Experimental Page 6

processing the payload. A response without the appropriate header be treated as an error
and be handled appropriately. All other aspects of the HTTP response and error handling are
inherited from standard DoH.

Proxies forward responses from the Target to the Client, without any modifications to the body or
status code. The Proxy also add a Proxy-Status response header with a "received-status"
parameter indicating that the status code was generated by the Target.

Note that if a Client receives a 3xx status code and chooses to follow a redirect, the subsequent
request also be performed through a Proxy in order to avoid directly exposing requests to
the Target.

Requests that cannot be processed by the Target result in 4xx (Client Error) responses. If the
Target and Client keys do not match, it is an authorization failure (HTTP status code 401; see

). Otherwise, if the Client's request is invalid, such as in the case of
decryption failure, wrong message type, or deserialization failure, this is a bad request (HTTP
status code 400; see).

Even in the case of DNS responses indicating failure, such as SERVFAIL or NXDOMAIN, a
successful HTTP response with a 2xx status code is used as long as the DNS response is valid. This
is identical to how DoH handles HTTP response codes.

MUST

SHOULD

MUST

Section 15.5.2 of [HTTP]

Section 15.5.1 of [HTTP]

[RFC8484]

4.4. HTTP Response Example
The following example shows a 2xx (Successful) response that can be sent from a Target to a
Client via a Proxy.

:status = 200
content-type = application/oblivious-dns-message
content-length = 154

<Bytes containing an encrypted Oblivious DNS response>

4.5. HTTP Metadata
Proxies forward requests and responses between Clients and Targets as specified in Section 4.1.
Metadata sent with these messages could inadvertently weaken or remove Oblivious DoH
privacy properties. Proxies send any Client-identifying information about Clients to
Targets, such as "Forwarded" HTTP headers . Additionally, Clients include any
private state in requests to Proxies, such as HTTP cookies. See Section 11.3 for related discussion
about Client authentication information.

MUST NOT
[RFC7239] MUST NOT

5. Configuration and Public Key Format
In order to send a message to a Target, the Client needs to know a public key to use for encrypting
its queries. The mechanism for discovering this configuration is out of scope for this document.

RFC 9230 Oblivious DoH June 2022

Kinnear, et al. Experimental Page 7

https://www.rfc-editor.org/rfc/rfc9110#section-15.5.2
https://www.rfc-editor.org/rfc/rfc9110#section-15.5.1

version:

length:

contents:

kem_id:

Servers ought to rotate public keys regularly. It is that servers rotate keys every
day. Shorter rotation windows reduce the anonymity set of Clients that might use the public key,
whereas longer rotation windows widen the time frame of possible compromise.

An Oblivious DNS public key configuration is a structure encoded, using TLS-style encoding
, as follows:

The ObliviousDoHConfigs structure contains one or more ObliviousDoHConfig structures in
decreasing order of preference. This allows a server to support multiple versions of Oblivious DoH
and multiple sets of Oblivious DoH parameters.

An ObliviousDoHConfig structure contains a versioned representation of an Oblivious DoH
configuration, with the following fields.

The version of Oblivious DoH for which this configuration is used. Clients ignore
any ObliviousDoHConfig structure with a version they do not support. The version of
Oblivious DoH specified in this document is 0x0001.

The length, in bytes, of the next field.

An opaque byte string whose contents depend on the version. For this specification,
the contents are an ObliviousDoHConfigContents structure.

An ObliviousDoHConfigContents structure contains the information needed to encrypt a
message under ObliviousDoHConfigContents.public_key such that only the owner of the
corresponding private key can decrypt the message. The values for
ObliviousDoHConfigContents.kem_id, ObliviousDoHConfigContents.kdf_id, and
ObliviousDoHConfigContents.aead_id are described in . The fields in this
structure are as follows:

RECOMMENDED

[RFC8446]

struct {
 uint16 kem_id;
 uint16 kdf_id;
 uint16 aead_id;
 opaque public_key<1..2^16-1>;
} ObliviousDoHConfigContents;

struct {
 uint16 version;
 uint16 length;
 select (ObliviousDoHConfig.version) {
 case 0x0001: ObliviousDoHConfigContents contents;
 }
} ObliviousDoHConfig;

ObliviousDoHConfig ObliviousDoHConfigs<1..2^16-1>;

MUST

Section 7 of [HPKE]

RFC 9230 Oblivious DoH June 2022

Kinnear, et al. Experimental Page 8

https://www.rfc-editor.org/rfc/rfc9180#section-7

kdf_id:

aead_id:

public_key:

The hybrid public key encryption (HPKE) key encapsulation mechanism (KEM) identifier
corresponding to public_key. Clients ignore any ObliviousDoHConfig structure with
a key using a KEM they do not support.

The HPKE key derivation function (KDF) identifier corresponding to public_key.
Clients ignore any ObliviousDoHConfig structure with a key using a KDF they do not
support.

The HPKE authenticated encryption with associated data (AEAD) identifier
corresponding to public_key. Clients ignore any ObliviousDoHConfig structure with
a key using an AEAD they do not support.

The HPKE public key used by the Client to encrypt Oblivious DoH queries.

MUST

MUST

MUST

6. Protocol Encoding
This section includes encoding and wire format details for Oblivious DoH, as well as routines for
encrypting and decrypting encoded values.

6.1. Message Format
There are two types of Oblivious DoH messages: Queries (0x01) and Responses (0x02). Both
messages carry the following information:

A DNS message, which is either a Query or Response, depending on context.
Padding of arbitrary length, which contain all zeros.

They are encoded using the following structure:

Both Query and Response messages use the ObliviousDoHMessagePlaintext format.

An encrypted ObliviousDoHMessagePlaintext parameter is carried in an
ObliviousDoHMessage message, encoded as follows:

1.
2. MUST

struct {
 opaque dns_message<1..2^16-1>;
 opaque padding<0..2^16-1>;
} ObliviousDoHMessagePlaintext;

ObliviousDoHMessagePlaintext ObliviousDoHQuery;
ObliviousDoHMessagePlaintext ObliviousDoHResponse;

RFC 9230 Oblivious DoH June 2022

Kinnear, et al. Experimental Page 9

message_type:

key_id:

encrypted_message:

The ObliviousDoHMessage structure contains the following fields:

A one-byte identifier for the type of message. Query messages use message_type
0x01, and Response messages use message_type 0x02.

The identifier of the corresponding ObliviousDoHConfigContents key. This is
computed as Expand(Extract("", config), "odoh key id", Nh), where config is the
ObliviousDoHConfigContents structure and Extract, Expand, and Nh are as specified by
the HPKE cipher suite KDF corresponding to config.kdf_id.

An encrypted message for the Oblivious Target (for Query messages) or
Client (for Response messages). Implementations enforce limits on the size of this field,
depending on the size of plaintext DNS messages. (DNS queries, for example, will not reach the
size limit of 2^16-1 in practice.)

The contents of ObliviousDoHMessage.encrypted_message depend on
ObliviousDoHMessage.message_type. In particular,
ObliviousDoHMessage.encrypted_message is an encryption of an ObliviousDoHQuery
message if the message is a Query and an encryption of ObliviousDoHResponse if the message
is a Response.

struct {
 uint8 message_type;
 opaque key_id<0..2^16-1>;
 opaque encrypted_message<1..2^16-1>;
} ObliviousDoHMessage;

MAY

6.2. Encryption and Decryption Routines
Clients use the following utility functions for encrypting a Query and decrypting a Response as
described in Section 7.

encrypt_query_body: Encrypt an Oblivious DoH query.

decrypt_response_body: Decrypt an Oblivious DoH response.

•

def encrypt_query_body(pkR, key_id, Q_plain):
 enc, context = SetupBaseS(pkR, "odoh query")
 aad = 0x01 || len(key_id) || key_id
 ct = context.Seal(aad, Q_plain)
 Q_encrypted = enc || ct
 return Q_encrypted

•

RFC 9230 Oblivious DoH June 2022

Kinnear, et al. Experimental Page 10

The derive_secrets function is described below.

Targets use the following utility functions in processing queries and producing responses as
described in Section 8.

setup_query_context: Set up an HPKE context used for decrypting an Oblivious DoH query.

decrypt_query_body: Decrypt an Oblivious DoH query.

derive_secrets: Derive keying material used for encrypting an Oblivious DoH response.

The random(N) function returns N cryptographically secure random bytes from a good source of
entropy . The max(A, B) function returns A if A > B, and B otherwise.

encrypt_response_body: Encrypt an Oblivious DoH response.

def decrypt_response_body(context, Q_plain, R_encrypted, resp_nonce):
 aead_key, aead_nonce = derive_secrets(context, Q_plain, resp_nonce)
 aad = 0x02 || len(resp_nonce) || resp_nonce
 R_plain, error = Open(key, nonce, aad, R_encrypted)
 return R_plain, error

•

def setup_query_context(skR, key_id, Q_encrypted):
 enc || ct = Q_encrypted
 context = SetupBaseR(enc, skR, "odoh query")
 return context

•

def decrypt_query_body(context, key_id, Q_encrypted):
 aad = 0x01 || len(key_id) || key_id
 enc || ct = Q_encrypted
 Q_plain, error = context.Open(aad, ct)
 return Q_plain, error

•

def derive_secrets(context, Q_plain, resp_nonce):
 secret = context.Export("odoh response", Nk)
 salt = Q_plain || len(resp_nonce) || resp_nonce
 prk = Extract(salt, secret)
 key = Expand(odoh_prk, "odoh key", Nk)
 nonce = Expand(odoh_prk, "odoh nonce", Nn)
 return key, nonce

[RFC4086]

•

def encrypt_response_body(R_plain, aead_key, aead_nonce, resp_nonce):
 aad = 0x02 || len(resp_nonce) || resp_nonce
 R_encrypted = Seal(aead_key, aead_nonce, aad, R_plain)
 return R_encrypted

RFC 9230 Oblivious DoH June 2022

Kinnear, et al. Experimental Page 11

7. Oblivious Client Behavior
Let M be a DNS message (query) a Client wishes to protect with Oblivious DoH. When sending an
Oblivious DoH Query for resolving M to an Oblivious Target with ObliviousDoHConfigContents
config, a Client does the following:

Creates an ObliviousDoHQuery structure, carrying the message M and padding, to produce
Q_plain.
Deserializes config.public_key to produce a public key pkR of type config.kem_id.
Computes the encrypted message as Q_encrypted = encrypt_query_body(pkR, key_id,
Q_plain), where key_id is as computed in Section 6. Note also that len(key_id) outputs
the length of key_id as a two-byte unsigned integer.
Outputs an ObliviousDoHMessage message Q, where Q.message_type = 0x01, Q.key_id
carries key_id, and Q.encrypted_message = Q_encrypted.

The Client then sends Q to the Proxy according to Section 4.1. Once the Client receives a response
R, encrypted as specified in Section 8, it uses decrypt_response_body to decrypt
R.encrypted_message (using R.key_id as a nonce) and produce R_plain. Clients validate
R_plain.padding (as all zeros) before using R_plain.dns_message.

1.

2.
3.

4.

MUST

8. Oblivious Target Behavior
Targets that receive a Query message Q decrypt and process it as follows:

Look up the ObliviousDoHConfigContents information according to Q.key_id. If no such
key exists, the Target discard the query, and if so, it return a 401 (Unauthorized)
response to the Proxy. Otherwise, let skR be the private key corresponding to this public key,
or one chosen for trial decryption.
Compute context = setup_query_context(skR, Q.key_id, Q.encrypted_message).
Compute Q_plain, error = decrypt_query_body(context, Q.key_id,
Q.encrypted_message).
If no error was returned and Q_plain.padding is valid (all zeros), resolve
Q_plain.dns_message as needed, yielding a DNS message M. Otherwise, if an error was
returned or the padding was invalid, return a 400 (Client Error) response to the Proxy.
Create an ObliviousDoHResponseBody structure, carrying the message M and padding, to
produce R_plain.
Create a fresh nonce resp_nonce = random(max(Nn, Nk)).
Compute aead_key, aead_nonce = derive_secrets(context, Q_plain,
resp_nonce).
Compute R_encrypted = encrypt_response_body(R_plain, aead_key, aead_nonce,
resp_nonce). The key_id field used for encryption carries resp_nonce in order for Clients
to derive the same secrets. Also, the Seal function is the function that is associated with the
HPKE AEAD.

1.
MAY MUST

2.
3.

4.

5.

6.
7.

8.

RFC 9230 Oblivious DoH June 2022

Kinnear, et al. Experimental Page 12

Output an ObliviousDoHMessage message R, where R.message_type = 0x02, R.key_id =
resp_nonce, and R.encrypted_message = R_encrypted.

The Target then sends R in a 2xx (Successful) response to the Proxy; see Section 4.3. The Proxy
forwards the message R without modification back to the Client as the HTTP response to the
Client's original HTTP request. In the event of an error (non-2xx status code), the Proxy forwards
the Target error to the Client; see Section 4.3.

9.

KEM:

KDF:

AEAD:

9. Compliance Requirements
Oblivious DoH uses HPKE for public key encryption . In the absence of an application
profile standard specifying otherwise, a compliant Oblivious DoH implementation support
the following HPKE cipher suite:

DHKEM(X25519, HKDF-SHA256) (see)

HKDF-SHA256 (see)

AES-128-GCM (see)

[HPKE]
MUST

[HPKE], Section 7.1

[HPKE], Section 7.2

[HPKE], Section 7.3

10. Experiment Overview
This document describes an experimental protocol built on DoH. The purpose of this experiment
is to assess deployment configuration viability and related performance impacts on DNS
resolution by measuring key performance indicators such as resolution latency. Experiment
participants will test various parameters affecting service operation and performance, including
mechanisms for discovery and configuration of DoH Proxies and Targets, as well as performance
implications of connection reuse and pools where appropriate. The results of this experiment will
be used to influence future protocol design and deployment efforts related to Oblivious DoH, such
as Oblivious HTTP . Implementations of DoH that are not involved in the experiment will
not recognize this protocol and will not participate in the experiment. It is anticipated that the
use of Oblivious DoH will be widespread and that this experiment will be of long duration.

[OHTP]

RFC 9230 Oblivious DoH June 2022

Kinnear, et al. Experimental Page 13

https://www.rfc-editor.org/rfc/rfc9180#section-7.1
https://www.rfc-editor.org/rfc/rfc9180#section-7.2
https://www.rfc-editor.org/rfc/rfc9180#section-7.3

11. Security Considerations
Oblivious DoH aims to keep knowledge of the true query origin and its contents known only to
Clients. As a simplified model, consider a case where there exist two Clients C1 and C2, one Proxy
P, and one Target T. Oblivious DoH assumes an extended Dolev-Yao style attacker
that can observe all network activity and can adaptively compromise either P or T, but not C1 or
C2. Note that compromising both P and T is equivalent to collusion between these two parties in
practice. Once compromised, the attacker has access to all session information and private key
material. (This generalizes to arbitrarily many Clients, Proxies, and Targets, with the constraints
that (1) not all Targets and Proxies are simultaneously compromised and (2) at least two Clients
are left uncompromised.) The attacker is prohibited from sending Client-identifying information,
such as IP addresses, to Targets. (This would allow the attacker to trivially link a query to the
corresponding Client.)

In this model, both C1 and C2 send Oblivious DoH queries Q1 and Q2, respectively, through P to T,
and T provides answers A1 and A2. The attacker aims to link C1 to (Q1, A1) and C2 to (Q2, A2),
respectively. The attacker succeeds if this linkability is possible without any additional
interaction. (For example, if T is compromised, it could return a DNS answer corresponding to an
entity it controls and then observe the subsequent connection from a Client, learning its identity
in the process. Such attacks are out of scope for this model.)

Oblivious DoH security prevents such linkability. Informally, this means:

Queries and answers are known only to Clients and Targets in possession of the
corresponding response key and HPKE keying material. In particular, Proxies know the
origin and destination of an oblivious query, yet do not know the plaintext query. Likewise,
Targets know only the oblivious query origin, i.e., the Proxy, and the plaintext query. Only the
Client knows both the plaintext query contents and destination.
Target resolvers cannot link queries from the same Client in the absence of unique per-Client
keys.

Traffic analysis mitigations are outside the scope of this document. In particular, this document
does not prescribe padding lengths for ObliviousDoHQuery and ObliviousDoHResponse
messages. Implementations follow the guidance in for choosing padding
length.

Oblivious DoH security does not depend on Proxy and Target indistinguishability. Specifically, an
on-path attacker could determine whether a connection to a specific endpoint is used for
oblivious or direct DoH queries. However, this has no effect on the confidentiality goals listed
above.

[Dolev-Yao]

1.

2.

SHOULD [RFC8467]

RFC 9230 Oblivious DoH June 2022

Kinnear, et al. Experimental Page 14

11.1. Denial of Service
Malicious Clients (or Proxies) can send bogus Oblivious DoH queries to Targets as a Denial-of-
Service (DoS) attack. Target servers can throttle processing requests if such an event occurs.
Additionally, since Targets provide explicit errors upon decryption failure, i.e., if ciphertext
decryption fails or if the plaintext DNS message is malformed, Proxies can throttle specific Clients
in response to these errors. In general, however, Targets trust Proxies to not overwhelm the
Target, and it is expected that Proxies implement either some form of rate limiting or client
authentication to limit abuse; see Section 11.3.

Malicious Targets or Proxies can send bogus answers in response to Oblivious DoH queries.
Response decryption failure is a signal that either the Proxy or Target is misbehaving. Clients can
choose to stop using one or both of these servers in the event of such failure. However, as noted
above, malicious Targets and Proxies are out of scope for the threat model.

11.2. Proxy Policies
Proxies are free to enforce any forwarding policy they desire for Clients. For example, they can
choose to only forward requests to known or otherwise trusted Targets.

Proxies that do not reuse connections to Targets for many Clients may allow Targets to link
individual queries to unknown Targets. To mitigate this linkability vector, it is
that Proxies pool and reuse connections to Targets. Note that this benefits performance as well as
privacy, since queries do not incur any delay that might otherwise result from Proxy-to-Target
connection establishment.

RECOMMENDED

11.3. Authentication
Depending on the deployment scenario, Proxies and Targets might require authentication before
use. Regardless of the authentication mechanism in place, Proxies reveal any Client
authentication information to Targets. This is required so Targets cannot uniquely identify
individual Clients.

Note that if Targets require Proxies to authenticate at the HTTP or application layer before use,
this ought to be done before attempting to forward any Client query to the Target. This will allow
Proxies to distinguish 401 (Unauthorized) response codes due to authentication failure from 401
response codes due to Client key mismatch; see Section 4.3.

MUST NOT

12. IANA Considerations
This document makes changes to the "Media Types" registry. The changes are described in the
following subsection.

12.1. Oblivious DoH Message Media Type
This document registers a new media type, "application/oblivious-dns-message".

RFC 9230 Oblivious DoH June 2022

Kinnear, et al. Experimental Page 15

[HPKE]

[HTTP]

13. References

13.1. Normative References

, , , and , ,
, , February 2022,
.

, , and , ,
, , , June 2022,

.

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Additional information:

Person and email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

Provisional registration? (standards tree only):

application

oblivious-dns-message

N/A

N/A

This is a binary format, containing encrypted DNS requests and
responses encoded as ObliviousDoHMessage values, as defined in Section 6.1.

See this document. The content is an encrypted DNS message, and not
executable code.

This document specifies the format of conforming messages
and the interpretation thereof; see Section 6.1.

This document

This media type is intended to be used by Clients wishing
to hide their DNS queries when using DNS over HTTPS.

N/A

See the Authors' Addresses
section.

COMMON

N/A

Tommy Pauly (tpauly@apple.com)

IETF

No

Barnes, R. Bhargavan, K. Lipp, B. C. Wood "Hybrid Public Key Encryption"
RFC 9180 DOI 10.17487/RFC9180 <https://www.rfc-editor.org/info/
rfc9180>

Fielding, R., Ed. Nottingham, M., Ed. J. Reschke, Ed. "HTTP Semantics" STD
97 RFC 9110 DOI 10.17487/RFC9110 <https://www.rfc-editor.org/info/
rfc9110>

RFC 9230 Oblivious DoH June 2022

Kinnear, et al. Experimental Page 16

https://www.rfc-editor.org/info/rfc9180
https://www.rfc-editor.org/info/rfc9180
https://www.rfc-editor.org/info/rfc9110
https://www.rfc-editor.org/info/rfc9110

[RFC2119]

[RFC4086]

[RFC6570]

[RFC8174]

[RFC8446]

[RFC8467]

[RFC8484]

[RFC9209]

[Dolev-Yao]

[OBLIVIOUS-DNS]

[OHTP]

[RFC7239]

, , ,
, , March 1997,
.

, , and ,
, , , , June 2005,

.

, , , , and ,
, , , March 2012,

.

, , ,
, , May 2017,
.

, , ,
, August 2018, .

, ,
, , October 2018,
.

 and , , ,
, October 2018, .

 and , ,
, , June 2022,
.

13.2. Informative References

 and , ,
,

, March 1983,
.

, , , and ,
, ,

, 2 July 2018,
.

 and , , ,
, 15 February 2022,

.

 and , , ,
, June 2014, .

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Eastlake 3rd, D. Schiller, J. S. Crocker "Randomness Requirements for
Security" BCP 106 RFC 4086 DOI 10.17487/RFC4086 <https://www.rfc-
editor.org/info/rfc4086>

Gregorio, J. Fielding, R. Hadley, M. Nottingham, M. D. Orchard "URI
Template" RFC 6570 DOI 10.17487/RFC6570 <https://www.rfc-
editor.org/info/rfc6570>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP 14
RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Rescorla, E. "The Transport Layer Security (TLS) Protocol Version 1.3" RFC 8446
DOI 10.17487/RFC8446 <https://www.rfc-editor.org/info/rfc8446>

Mayrhofer, A. "Padding Policies for Extension Mechanisms for DNS (EDNS(0))"
RFC 8467 DOI 10.17487/RFC8467 <https://www.rfc-editor.org/info/
rfc8467>

Hoffman, P. P. McManus "DNS Queries over HTTPS (DoH)" RFC 8484 DOI
10.17487/RFC8484 <https://www.rfc-editor.org/info/rfc8484>

Nottingham, M. P. Sikora "The Proxy-Status HTTP Response Header Field"
RFC 9209 DOI 10.17487/RFC9209 <https://www.rfc-editor.org/info/
rfc9209>

Dolev, D. A. C. Yao "On the Security of Public Key Protocols" IEEE
Transactions on Information Theory, Vol. IT-29, No. 2 DOI 10.1109/TIT.
1983.1056650 <https://www.cs.huji.ac.il/~dolev/pubs/dolev-yao-
ieee-01056650.pdf>

Edmundson, A. Schmitt, P. Feamster, N. A. Mankin "Oblivious DNS -
Strong Privacy for DNS Queries" Work in Progress Internet-Draft, draft-annee-
dprive-oblivious-dns-00 <https://datatracker.ietf.org/doc/html/draft-
annee-dprive-oblivious-dns-00>

Thomson, M. C.A. Wood "Oblivious HTTP" Work in Progress Internet-Draft,
draft-ietf-ohai-ohttp-01 <https://datatracker.ietf.org/doc/html/
draft-ietf-ohai-ohttp-01>

Petersson, A. M. Nilsson "Forwarded HTTP Extension" RFC 7239 DOI
10.17487/RFC7239 <https://www.rfc-editor.org/info/rfc7239>

RFC 9230 Oblivious DoH June 2022

Kinnear, et al. Experimental Page 17

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc4086
https://www.rfc-editor.org/info/rfc4086
https://www.rfc-editor.org/info/rfc6570
https://www.rfc-editor.org/info/rfc6570
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8467
https://www.rfc-editor.org/info/rfc8467
https://www.rfc-editor.org/info/rfc8484
https://www.rfc-editor.org/info/rfc9209
https://www.rfc-editor.org/info/rfc9209
https://www.cs.huji.ac.il/~dolev/pubs/dolev-yao-ieee-01056650.pdf
https://www.cs.huji.ac.il/~dolev/pubs/dolev-yao-ieee-01056650.pdf
https://datatracker.ietf.org/doc/html/draft-annee-dprive-oblivious-dns-00
https://datatracker.ietf.org/doc/html/draft-annee-dprive-oblivious-dns-00
https://datatracker.ietf.org/doc/html/draft-ietf-ohai-ohttp-01
https://datatracker.ietf.org/doc/html/draft-ietf-ohai-ohttp-01
https://www.rfc-editor.org/info/rfc7239

[RFC7871] , , , and ,
, , , May 2016,

.

Contavalli, C. van der Gaast, W. Lawrence, D. W. Kumari "Client Subnet in
DNS Queries" RFC 7871 DOI 10.17487/RFC7871 <https://www.rfc-
editor.org/info/rfc7871>

Appendix A. Use of Generic Proxy Services
Using DoH over anonymizing proxy services such as Tor can also achieve the desired goal of
separating query origins from their contents. However, there are several reasons why such
systems are undesirable as contrasted with Oblivious DoH:

Tor is meant to be a generic connection-level anonymity system, and it incurs higher latency
costs and protocol complexity for the purpose of proxying individual DNS queries. In
contrast, Oblivious DoH is a lightweight protocol built on DoH, implemented as an
application-layer proxy, that can be enabled as a default mode for users that need increased
privacy.
As a one-hop proxy, Oblivious DoH encourages connectionless proxies to mitigate Client
query correlation with few round trips. In contrast, multi-hop systems such as Tor often run
secure connections (TLS) end to end, which means that DoH servers could track queries over
the same connection. Using a fresh DoH connection per query would incur a non-negligible
penalty in connection setup time.

1.

2.

Acknowledgments
This work is inspired by Oblivious DNS . Thanks to all of the authors of that
document. Thanks to , , , ,

, , , , , and for their
feedback and input.

[OBLIVIOUS-DNS]
Nafeez Ahamed Elliot Briggs Marwan Fayed Jonathan Hoyland Frederic

Jacobs Tommy Jensen Erik Nygren Paul Schmitt Brian Swander Peter Wu

Authors' Addresses
Eric Kinnear
Apple Inc.
One Apple Park Way

, Cupertino California 95014
United States of America

 ekinnear@apple.com Email:

Patrick McManus
Fastly

 mcmanus@ducksong.com Email:

RFC 9230 Oblivious DoH June 2022

Kinnear, et al. Experimental Page 18

https://www.rfc-editor.org/info/rfc7871
https://www.rfc-editor.org/info/rfc7871
mailto:ekinnear@apple.com
mailto:mcmanus@ducksong.com

Tommy Pauly
Apple Inc.
One Apple Park Way

, Cupertino California 95014
United States of America

 tpauly@apple.com Email:

Tanya Verma
Cloudflare
101 Townsend St

, San Francisco California 94107
United States of America

 vermatanyax@gmail.com Email:

Christopher A. Wood
Cloudflare
101 Townsend St

, San Francisco California 94107
United States of America

 caw@heapingbits.net Email:

RFC 9230 Oblivious DoH June 2022

Kinnear, et al. Experimental Page 19

mailto:tpauly@apple.com
mailto:vermatanyax@gmail.com
mailto:caw@heapingbits.net

	RFC 9230
	Oblivious DNS over HTTPS
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Specification of Requirements

	2. Terminology
	3. Deployment Requirements
	4. HTTP Exchange
	4.1. HTTP Request
	4.2. HTTP Request Example
	4.3. HTTP Response
	4.4. HTTP Response Example
	4.5. HTTP Metadata

	5. Configuration and Public Key Format
	6. Protocol Encoding
	6.1. Message Format
	6.2. Encryption and Decryption Routines

	7. Oblivious Client Behavior
	8. Oblivious Target Behavior
	9. Compliance Requirements
	10. Experiment Overview
	11. Security Considerations
	11.1. Denial of Service
	11.2. Proxy Policies
	11.3. Authentication

	12. IANA Considerations
	12.1. Oblivious DoH Message Media Type

	13. References
	13.1. Normative References
	13.2. Informative References

	Appendix A. Use of Generic Proxy Services
	Acknowledgments
	Authors' Addresses

 Oblivious DNS over HTTPS

 Apple Inc.

 One Apple Park Way
 Cupertino
 California
 95014
 United States of America

 ekinnear@apple.com

 Fastly

 mcmanus@ducksong.com

 Apple Inc.

 One Apple Park Way
 Cupertino
 California
 95014
 United States of America

 tpauly@apple.com

 Cloudflare

 101 Townsend St
 San Francisco
 California
 94107
 United States of America

 vermatanyax@gmail.com

 Cloudflare

 101 Townsend St
 San Francisco
 California
 94107
 United States of America

 caw@heapingbits.net

 Privacy
 DNS Privacy
 DoH
 ODoH
 HPKE

 This document describes a protocol that allows clients to hide their IP addresses from DNS resolvers
via proxying encrypted DNS over HTTPS (DoH) messages. This improves privacy of
DNS operations by not allowing any one server entity to be aware of both the client IP
address and the content of DNS queries and answers.
 This experimental protocol has been developed outside the IETF and is published here to
guide implementation, ensure interoperability among implementations, and enable
wide-scale experimentation.

 Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for examination, experimental implementation, and
 evaluation.

 This document defines an Experimental Protocol for the Internet
 community. This is a contribution to the RFC Series,
 independently of any other RFC stream. The RFC Editor has chosen to publish this
 document at its discretion and makes no statement about its value
 for implementation or deployment. Documents approved for publication
 by the RFC Editor are not candidates for any level of Internet
 Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document.

 Table of Contents

 . Introduction

 . Specification of Requirements

 . Terminology

 . Deployment Requirements

 . HTTP Exchange

 . HTTP Request

 . HTTP Request Example

 . HTTP Response

 . HTTP Response Example

 . HTTP Metadata

 . Configuration and Public Key Format

 . Protocol Encoding

 . Message Format

 . Encryption and Decryption Routines

 . Oblivious Client Behavior

 . Oblivious Target Behavior

 . Compliance Requirements

 . Experiment Overview

 . Security Considerations

 . Denial of Service

 . Proxy Policies

 . Authentication

 . IANA Considerations

 . Oblivious DoH Message Media Type

 . References

 . Normative References

 . Informative References

 . Use of Generic Proxy Services

 Acknowledgments

 Authors' Addresses

 Introduction
 DNS over HTTPS (DoH) defines a mechanism to allow DNS messages to be
transmitted in HTTP messages protected with TLS. This provides improved confidentiality
and authentication for DNS interactions in various circumstances.
 While DoH can prevent eavesdroppers from directly reading the contents of DNS exchanges,
clients cannot send DNS queries to and receive answers from servers without revealing
their local IP address (and thus information about the identity or location of the client)
to the server.
 Proposals such as Oblivious DNS increase privacy
by ensuring that no single DNS server is aware of both the client IP address and the message
contents.
 This document defines Oblivious DoH, an experimental protocol built on DoH that permits proxied
resolution, in which DNS messages are encrypted so that no server can independently read
both the client IP address and the DNS message contents.
 As with DoH, DNS messages exchanged over Oblivious DoH are fully formed DNS messages.
Clients that want to receive answers that are relevant to the network they are on without
revealing their exact IP address can thus use the EDNS0 Client Subnet option ()
to provide a hint to the resolver using Oblivious DoH.
 This mechanism is intended to be used as one mechanism for resolving privacy-sensitive
content in the broader context of DNS privacy.
 This experimental protocol has been developed outside the IETF and is published here to
guide implementation, ensure interoperability among implementations, and enable
wide-scale experimentation. See for more details about the experiment.

 Specification of Requirements
 The key words " MUST", " MUST NOT",
 " REQUIRED", " SHALL",
 " SHALL NOT", " SHOULD",
 " SHOULD NOT",
 " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document
 are to be interpreted as described in BCP 14
 when, and only
 when, they appear in all capitals, as shown here.

 Terminology
 This document defines the following terms:

Oblivious Client:

 A client that sends DNS queries to an Oblivious Target, through an Oblivious Proxy. The Client is responsible for selecting the combination of Proxy and Target to use for a given query.

Oblivious Proxy:

 An HTTP server that proxies encrypted DNS queries and responses between an Oblivious Client and an
Oblivious Target and is identified by a URI Template (see).
Note that this Oblivious Proxy is not acting as a full HTTP proxy but is instead a specialized
server used to forward Oblivious DNS messages.

Oblivious Target:

 An HTTP server that receives and decrypts encrypted Oblivious Client DNS queries from an Oblivious Proxy
and returns encrypted DNS responses via that same Proxy. In order to provide DNS responses, the Target
can be a DNS resolver, be co-located with a resolver, or forward to a resolver.

 Throughout the rest of this document, we use the terms "Client", "Proxy", and "Target" to refer to an Oblivious Client,
Oblivious Proxy, and Oblivious Target, respectively.

 Deployment Requirements
 Oblivious DoH requires, at a minimum:

 An Oblivious Proxy server, identified by a URI Template.
 An Oblivious Target server. The Target and Proxy are expected to be non-colluding (see
).
 One or more Target public keys for encrypting DNS queries sent to a Target via a Proxy
(). These keys guarantee that only the intended Target can decrypt Client queries.

 The mechanism for discovering and provisioning the Proxy URI Template and Target public keys
is out of scope for this document.

 HTTP Exchange
 Unlike direct resolution, oblivious hostname resolution over DoH involves three parties:
 The Client, which generates queries.
 The Proxy, which receives encrypted queries from the Client and passes them on to a Target.
 The Target, which receives proxied queries from the Client via the Proxy and produces proxied
answers.

 Oblivious DoH Exchange

 --- [Request encrypted with Target public key] -->
+---------+ +-----------+ +-----------+
| Client +-------------> Oblivious +-------------> Oblivious |
| <-------------+ Proxy <-------------+ Target |
+---------+ +-----------+ +-----------+
 <-- [Response encrypted with symmetric key] ---

 HTTP Request
 Oblivious DoH queries are created by the Client and are sent to the Proxy as HTTP
requests using the POST method. Clients are configured with a Proxy URI Template
 and the Target URI. The scheme for both the Proxy URI Template and
the Target URI MUST be "https". The Proxy URI Template uses the Level 3 encoding
defined in
 and contains two variables: "targethost",
which indicates the hostname of the Target server; and "targetpath",
which indicates the path on which the Target is accessible. Examples of
Proxy URI Templates are shown below:

https://dnsproxy.example/dns-query{?targethost,targetpath}
https://dnsproxy.example/{targethost}/{targetpath}

 The URI Template MUST contain both the "targethost" and "targetpath" variables exactly
once and MUST NOT contain any other variables. The variables MUST be within the path
or query components of the URI. Clients MUST ignore configurations that do not conform
to this template. See for an example request.
 Oblivious DoH messages have no cache value, since both requests and responses are
encrypted using ephemeral key material. Requests and responses MUST NOT be cached.
 Clients MUST set the HTTP Content-Type header to "application/oblivious-dns-message"
to indicate that this request is an Oblivious DoH query intended for proxying. Clients
also SHOULD set this same value for the HTTP Accept header.
 A correctly encoded request has the HTTP Content-Type header "application/oblivious-dns-message",
uses the HTTP POST method, and contains "targethost" and "targetpath" variables. If the Proxy
fails to match the "targethost" and "targetpath" variables from the path, it MUST treat the
request as malformed. The Proxy constructs the URI of the Target with the "https" scheme,
using the value of "targethost" as the URI host and the percent-decoded value of "targetpath" as the
URI path. Proxies MUST check that Client requests are correctly encoded and MUST return a
4xx (Client Error) if the check fails, along with the Proxy-Status response header
with an "error" parameter of type "http_request_error" .
 Proxies MAY choose to not forward connections to non-standard ports. In such cases, Proxies
can indicate the error with a 403 response status code, along with a Proxy-Status response
header with an "error" parameter of type "http_request_denied" and with an appropriate
explanation in "details".
 If the Proxy cannot establish a connection to the Target, it can indicate the error with a
502 response status code, along with a Proxy-Status response header with an "error" parameter
whose type indicates the reason. For example, if DNS resolution fails, the error type might be
"dns_timeout", whereas if the TLS connection fails, the error type might be "tls_protocol_error".
 Upon receipt of requests from a Proxy, Targets MUST validate that the request has the HTTP
Content-Type header "application/oblivious-dns-message" and uses the HTTP POST method.
Targets can respond with a 4xx response status code if this check fails.

 HTTP Request Example
 The following example shows how a Client requests that a Proxy, "dnsproxy.example",
forward an encrypted message to "dnstarget.example". The URI Template for the
Proxy is "https://dnsproxy.example/dns-query{?targethost,targetpath}". The URI for
the Target is "https://dnstarget.example/dns-query".

:method = POST
:scheme = https
:authority = dnsproxy.example
:path = /dns-query?targethost=dnstarget.example&targetpath=/dns-query
accept = application/oblivious-dns-message
content-type = application/oblivious-dns-message
content-length = 106

<Bytes containing an encrypted Oblivious DNS query>

 The Proxy then sends the following request on to the Target:

:method = POST
:scheme = https
:authority = dnstarget.example
:path = /dns-query
accept = application/oblivious-dns-message
content-type = application/oblivious-dns-message
content-length = 106

<Bytes containing an encrypted Oblivious DNS query>

 HTTP Response
 The response to an Oblivious DoH query is generated by the Target. It MUST set the
Content-Type HTTP header to "application/oblivious-dns-message" for all successful responses.
The body of the response contains an encrypted DNS message; see .
 The response from a Target MUST set the Content-Type HTTP header to "application/oblivious-dns-message", and that same type
 MUST be used on all successful responses sent by the Proxy to the Client. A Client MUST only consider a response that contains the
Content-Type header before processing the payload. A response without the appropriate header MUST be
treated as an error and be handled appropriately. All other aspects of the HTTP response and error handling are
inherited from standard DoH.
 Proxies forward responses from the Target to the Client, without any modifications to the body or status code.
The Proxy also SHOULD add a Proxy-Status response header with a "received-status" parameter indicating
that the status code was generated by the Target.
 Note that if a Client receives a 3xx status code and chooses to follow a redirect, the subsequent request
 MUST also be performed through a Proxy in order to avoid directly exposing requests to the Target.
 Requests that cannot be processed by the Target result in 4xx (Client Error) responses. If the Target
and Client keys do not match, it is an authorization failure (HTTP status code 401; see). Otherwise, if the Client's request is invalid, such as in the case of decryption
failure, wrong message type, or deserialization failure, this is a bad request (HTTP status code 400; see).
 Even in the case of DNS responses indicating failure, such as SERVFAIL or NXDOMAIN, a successful HTTP response
with a 2xx status code is used as long as the DNS response is valid. This is identical to how DoH
handles HTTP response codes.

 HTTP Response Example
 The following example shows a 2xx (Successful) response that can be sent from a Target to
a Client via a Proxy.

:status = 200
content-type = application/oblivious-dns-message
content-length = 154

<Bytes containing an encrypted Oblivious DNS response>

 HTTP Metadata
 Proxies forward requests and responses between Clients and Targets as specified in .
Metadata sent with these messages could inadvertently weaken or remove Oblivious DoH privacy properties.
Proxies MUST NOT send any Client-identifying information about Clients to Targets, such as
"Forwarded" HTTP headers . Additionally, Clients MUST NOT include any private state in
requests to Proxies, such as HTTP cookies. See for related discussion about
Client authentication information.

 Configuration and Public Key Format
 In order to send a message to a Target, the Client needs to know a public key to use
for encrypting its queries. The mechanism for discovering this configuration is
out of scope for this document.
 Servers ought to rotate public keys regularly. It is RECOMMENDED that servers rotate keys
every day. Shorter rotation windows reduce the anonymity set of Clients that might use
the public key, whereas longer rotation windows widen the time frame of possible compromise.
 An Oblivious DNS public key configuration is a structure encoded, using TLS-style
encoding , as follows:

struct {
 uint16 kem_id;
 uint16 kdf_id;
 uint16 aead_id;
 opaque public_key<1..2^16-1>;
} ObliviousDoHConfigContents;

struct {
 uint16 version;
 uint16 length;
 select (ObliviousDoHConfig.version) {
 case 0x0001: ObliviousDoHConfigContents contents;
 }
} ObliviousDoHConfig;

ObliviousDoHConfig ObliviousDoHConfigs<1..2^16-1>;

 The ObliviousDoHConfigs structure contains one or more ObliviousDoHConfig structures in decreasing order of
preference. This allows a server to support multiple versions of Oblivious DoH and multiple sets of Oblivious DoH
parameters.
 An ObliviousDoHConfig structure contains a versioned representation of an Oblivious DoH configuration,
with the following fields.

version:

 The version of Oblivious DoH for which this configuration is used. Clients MUST ignore any
 ObliviousDoHConfig structure with a version they do not support. The version of Oblivious DoH
specified in this document is 0x0001.

length:

 The length, in bytes, of the next field.

contents:

 An opaque byte string whose contents depend on the version. For this
specification, the contents are an ObliviousDoHConfigContents structure.

 An ObliviousDoHConfigContents structure contains the information needed to encrypt a message under
 ObliviousDoHConfigContents.public_key such that only the owner of the corresponding private
key can decrypt the message. The values for ObliviousDoHConfigContents.kem_id,
 ObliviousDoHConfigContents.kdf_id, and ObliviousDoHConfigContents.aead_id
are described in . The fields in this structure
are as follows:

kem_id:

 The hybrid public key encryption (HPKE) key encapsulation mechanism (KEM) identifier corresponding to public_key. Clients MUST ignore any
 ObliviousDoHConfig structure with a key using a KEM they do not support.

kdf_id:

 The HPKE key derivation function (KDF) identifier corresponding to public_key. Clients MUST ignore any
 ObliviousDoHConfig structure with a key using a KDF they do not support.

aead_id:

 The HPKE authenticated encryption with associated data (AEAD) identifier corresponding to public_key. Clients MUST ignore any
 ObliviousDoHConfig structure with a key using an AEAD they do not support.

public_key:

 The HPKE public key used by the Client to encrypt Oblivious DoH queries.

 Protocol Encoding
 This section includes encoding and wire format details for Oblivious DoH, as well
as routines for encrypting and decrypting encoded values.

 Message Format
 There are two types of Oblivious DoH messages: Queries (0x01) and Responses (0x02).
Both messages carry the following information:
 A DNS message, which is either a Query or Response, depending on context.
 Padding of arbitrary length, which MUST contain all zeros.

 They are encoded using the following structure:

struct {
 opaque dns_message<1..2^16-1>;
 opaque padding<0..2^16-1>;
} ObliviousDoHMessagePlaintext;

 Both Query and Response messages use the ObliviousDoHMessagePlaintext format.

ObliviousDoHMessagePlaintext ObliviousDoHQuery;
ObliviousDoHMessagePlaintext ObliviousDoHResponse;

 An encrypted ObliviousDoHMessagePlaintext parameter is carried in an ObliviousDoHMessage
message, encoded as follows:

struct {
 uint8 message_type;
 opaque key_id<0..2^16-1>;
 opaque encrypted_message<1..2^16-1>;
} ObliviousDoHMessage;

 The ObliviousDoHMessage structure contains the following fields:

message_type:

 A one-byte identifier for the type of message. Query messages use message_type 0x01, and Response
messages use message_type 0x02.

key_id:

 The identifier of the corresponding ObliviousDoHConfigContents key. This is computed as
 Expand(Extract("", config), "odoh key id", Nh), where config is the ObliviousDoHConfigContents structure
and Extract, Expand, and Nh are as specified by the HPKE cipher suite KDF corresponding to
 config.kdf_id.

encrypted_message:

 An encrypted message for the Oblivious Target (for Query messages) or Client (for Response messages).
Implementations MAY enforce limits on the size of this field, depending on the size of plaintext DNS
messages. (DNS queries, for example, will not reach the size limit of 2^16-1 in practice.)

 The contents of ObliviousDoHMessage.encrypted_message depend on ObliviousDoHMessage.message_type.
In particular, ObliviousDoHMessage.encrypted_message is an encryption of an ObliviousDoHQuery message
if the message is a Query and an encryption of ObliviousDoHResponse if the message is a Response.

 Encryption and Decryption Routines
 Clients use the following utility functions for encrypting a Query and decrypting
a Response as described in .

 encrypt_query_body: Encrypt an Oblivious DoH query.

def encrypt_query_body(pkR, key_id, Q_plain):
 enc, context = SetupBaseS(pkR, "odoh query")
 aad = 0x01 || len(key_id) || key_id
 ct = context.Seal(aad, Q_plain)
 Q_encrypted = enc || ct
 return Q_encrypted

 decrypt_response_body: Decrypt an Oblivious DoH response.

def decrypt_response_body(context, Q_plain, R_encrypted, resp_nonce):
 aead_key, aead_nonce = derive_secrets(context, Q_plain, resp_nonce)
 aad = 0x02 || len(resp_nonce) || resp_nonce
 R_plain, error = Open(key, nonce, aad, R_encrypted)
 return R_plain, error

 The derive_secrets function is described below.
 Targets use the following utility functions in processing queries and producing
responses as described in .

 setup_query_context: Set up an HPKE context used for decrypting an Oblivious DoH query.

def setup_query_context(skR, key_id, Q_encrypted):
 enc || ct = Q_encrypted
 context = SetupBaseR(enc, skR, "odoh query")
 return context

 decrypt_query_body: Decrypt an Oblivious DoH query.

def decrypt_query_body(context, key_id, Q_encrypted):
 aad = 0x01 || len(key_id) || key_id
 enc || ct = Q_encrypted
 Q_plain, error = context.Open(aad, ct)
 return Q_plain, error

 derive_secrets: Derive keying material used for encrypting an Oblivious DoH response.

def derive_secrets(context, Q_plain, resp_nonce):
 secret = context.Export("odoh response", Nk)
 salt = Q_plain || len(resp_nonce) || resp_nonce
 prk = Extract(salt, secret)
 key = Expand(odoh_prk, "odoh key", Nk)
 nonce = Expand(odoh_prk, "odoh nonce", Nn)
 return key, nonce

 The random(N) function returns N cryptographically secure random bytes
from a good source of entropy . The max(A, B) function returns
 A if A > B, and B otherwise.

 encrypt_response_body: Encrypt an Oblivious DoH response.

def encrypt_response_body(R_plain, aead_key, aead_nonce, resp_nonce):
 aad = 0x02 || len(resp_nonce) || resp_nonce
 R_encrypted = Seal(aead_key, aead_nonce, aad, R_plain)
 return R_encrypted

 Oblivious Client Behavior
 Let M be a DNS message (query) a Client wishes to protect with Oblivious DoH.
When sending an Oblivious DoH Query for resolving M to an Oblivious Target with
 ObliviousDoHConfigContents config, a Client does the following:
 Creates an ObliviousDoHQuery structure, carrying the message M and padding, to produce Q_plain.
 Deserializes config.public_key to produce a public key pkR of type config.kem_id.
 Computes the encrypted message as Q_encrypted = encrypt_query_body(pkR, key_id, Q_plain),
where key_id is as computed in . Note also that len(key_id) outputs the length of key_id
as a two-byte unsigned integer.
 Outputs an ObliviousDoHMessage message Q, where Q.message_type = 0x01, Q.key_id carries key_id,
and Q.encrypted_message = Q_encrypted.

 The Client then sends Q to the Proxy according to .
Once the Client receives a response R, encrypted as specified in ,
it uses decrypt_response_body to decrypt R.encrypted_message (using R.key_id as
a nonce) and produce R_plain. Clients MUST validate R_plain.padding (as all zeros)
before using R_plain.dns_message.

 Oblivious Target Behavior
 Targets that receive a Query message Q decrypt and process it as follows:
 Look up the ObliviousDoHConfigContents information according to Q.key_id. If no such key exists,
the Target MAY discard the query, and if so, it MUST return a 401 (Unauthorized) response
to the Proxy. Otherwise, let skR be the private key corresponding to this public key,
or one chosen for trial decryption.
 Compute context = setup_query_context(skR, Q.key_id, Q.encrypted_message).
 Compute Q_plain, error = decrypt_query_body(context, Q.key_id, Q.encrypted_message).
 If no error was returned and Q_plain.padding is valid (all zeros), resolve
 Q_plain.dns_message as needed, yielding a DNS message M. Otherwise, if an error
was returned or the padding was invalid, return a 400 (Client Error) response to the Proxy.
 Create an ObliviousDoHResponseBody structure, carrying the message M and padding,
to produce R_plain.
 Create a fresh nonce resp_nonce = random(max(Nn, Nk)).
 Compute aead_key, aead_nonce = derive_secrets(context, Q_plain, resp_nonce).
 Compute R_encrypted = encrypt_response_body(R_plain, aead_key, aead_nonce, resp_nonce).
The key_id field used for encryption carries resp_nonce in order for Clients to
derive the same secrets. Also, the Seal function is the function that is associated with the
HPKE AEAD.
 Output an ObliviousDoHMessage message R, where R.message_type = 0x02,
 R.key_id = resp_nonce, and R.encrypted_message = R_encrypted.

 The Target then sends R in a 2xx (Successful) response to the Proxy; see .
The Proxy forwards the message R without modification back to the Client as the HTTP response
to the Client's original HTTP request. In the event of an error (non-2xx status code), the
Proxy forwards the Target error to the Client; see .

 Compliance Requirements
 Oblivious DoH uses HPKE for public key encryption .
In the absence of an application profile standard specifying otherwise, a compliant
Oblivious DoH implementation MUST support the following HPKE cipher suite:

 KEM:
 DHKEM(X25519, HKDF-SHA256) (see)
 KDF:
 HKDF-SHA256 (see)
 AEAD:
 AES-128-GCM (see)

 Experiment Overview
 This document describes an experimental protocol built on DoH. The purpose of this
experiment is to assess deployment configuration viability and related performance
impacts on DNS resolution by measuring key performance indicators such as resolution
latency. Experiment participants will test various parameters affecting service operation
and performance, including mechanisms for discovery and configuration of DoH Proxies
and Targets, as well as performance implications of connection reuse and pools where
appropriate. The results of this experiment will be used to influence future protocol
design and deployment efforts related to Oblivious DoH, such as Oblivious HTTP
 . Implementations of DoH that are not involved in the
experiment will not recognize this protocol and will not participate in the experiment.
It is anticipated that the use of Oblivious DoH will be widespread and that this experiment will be of long duration.

 Security Considerations
 Oblivious DoH aims to keep knowledge of the true query origin and its contents known only to Clients.
As a simplified model, consider a case where there exist two Clients C1 and C2, one Proxy P, and
one Target T. Oblivious DoH assumes an extended Dolev-Yao style attacker that can observe all
network activity and can adaptively compromise either P or T, but not C1 or C2. Note that compromising
both P and T is equivalent to collusion between these two parties in practice. Once compromised,
the attacker has access to all session information and private key material. (This generalizes to
arbitrarily many Clients, Proxies, and Targets, with the constraints that (1) not all Targets and Proxies
are simultaneously compromised and (2) at least two Clients are left uncompromised.) The attacker is
prohibited from sending Client-identifying information, such as IP addresses, to Targets. (This would
allow the attacker to trivially link a query to the corresponding Client.)
 In this model, both C1 and C2 send Oblivious DoH queries Q1 and Q2, respectively, through P to T,
and T provides answers A1 and A2. The attacker aims to link C1 to (Q1, A1) and C2 to (Q2, A2), respectively.
The attacker succeeds if this linkability is possible without any additional interaction. (For example,
if T is compromised, it could return a DNS answer corresponding to an entity it controls and then observe
the subsequent connection from a Client, learning its identity in the process. Such attacks are out of
scope for this model.)
 Oblivious DoH security prevents such linkability. Informally, this means:
 Queries and answers are known only to Clients and Targets in possession of the corresponding
response key and HPKE keying material. In particular, Proxies know the origin and destination
of an oblivious query, yet do not know the plaintext query. Likewise, Targets know only the oblivious
query origin, i.e., the Proxy, and the plaintext query. Only the Client knows both the plaintext
query contents and destination.
 Target resolvers cannot link queries from the same Client in the absence of unique per-Client
keys.

 Traffic analysis mitigations are outside the scope of this document. In particular, this document
does not prescribe padding lengths for ObliviousDoHQuery and ObliviousDoHResponse messages.
Implementations SHOULD follow the guidance in for choosing padding length.
 Oblivious DoH security does not depend on Proxy and Target indistinguishability. Specifically, an
on-path attacker could determine whether a connection to a specific endpoint is used for oblivious or
direct DoH queries. However, this has no effect on the confidentiality goals listed above.

 Denial of Service
 Malicious Clients (or Proxies) can send bogus Oblivious DoH queries to Targets as a Denial-of-Service
(DoS) attack. Target servers can throttle processing requests if such an event occurs. Additionally,
since Targets provide explicit errors upon decryption failure, i.e., if ciphertext decryption fails
or if the plaintext DNS message is malformed, Proxies can throttle specific Clients in response to
these errors. In general, however, Targets trust Proxies to not overwhelm the Target, and it is
expected that Proxies implement either some form of rate limiting or client authentication to limit
abuse; see .
 Malicious Targets or Proxies can send bogus answers in response to Oblivious DoH queries. Response
decryption failure is a signal that either the Proxy or Target is misbehaving. Clients can choose to
stop using one or both of these servers in the event of such failure. However, as noted above, malicious
Targets and Proxies are out of scope for the threat model.

 Proxy Policies
 Proxies are free to enforce any forwarding policy they desire for Clients. For example, they can choose
to only forward requests to known or otherwise trusted Targets.
 Proxies that do not reuse connections to Targets for many Clients may allow Targets to link individual
queries to unknown Targets. To mitigate this linkability vector, it is RECOMMENDED that Proxies pool
and reuse connections to Targets. Note that this benefits performance as well as privacy, since
queries do not incur any delay that might otherwise result from Proxy-to-Target connection establishment.

 Authentication
 Depending on the deployment scenario, Proxies and Targets might require authentication before use.
Regardless of the authentication mechanism in place, Proxies MUST NOT reveal any Client
authentication information to Targets. This is required so Targets cannot uniquely identify
individual Clients.
 Note that if Targets require Proxies to authenticate at the HTTP or application layer before use,
this ought to be done before attempting to forward any Client query to the Target. This will allow
Proxies to distinguish 401 (Unauthorized) response codes due to authentication failure from
401 response codes due to Client key mismatch; see .

 IANA Considerations
 This document makes changes to the "Media Types" registry.
The changes are described in the following subsection.

 Oblivious DoH Message Media Type
 This document registers a new media type, "application/oblivious-dns-message".

 Type name:
 application
 Subtype name:
 oblivious-dns-message
 Required parameters:
 N/A
 Optional parameters:
 N/A
 Encoding considerations:
 This is a binary format, containing encrypted DNS
requests and responses encoded as ObliviousDoHMessage values, as defined
in .
 Security considerations:
 See this document. The content is an encrypted DNS
message, and not executable code.
 Interoperability considerations:
 This document specifies the format of
conforming messages and the interpretation thereof; see .
 Published specification:
 This document
 Applications that use this media type:
 This media type is intended
to be used by Clients wishing to hide their DNS queries when
using DNS over HTTPS.
 Additional information:
 N/A
 Person and email address to contact for further information:
 See the
Authors' Addresses section.
 Intended usage:
 COMMON
 Restrictions on usage:
 N/A
 Author:
 Tommy Pauly (tpauly@apple.com)
 Change controller:
 IETF
 Provisional registration? (standards tree only):
 No

 References

 Normative References

 Hybrid Public Key Encryption

 This document describes a scheme for hybrid public key encryption (HPKE). This scheme provides a variant of public key encryption of arbitrary-sized plaintexts for a recipient public key. It also includes three authenticated variants, including one that authenticates possession of a pre-shared key and two optional ones that authenticate possession of a key encapsulation mechanism (KEM) private key. HPKE works for any combination of an asymmetric KEM, key derivation function (KDF), and authenticated encryption with additional data (AEAD) encryption function. Some authenticated variants may not be supported by all KEMs. We provide instantiations of the scheme using widely used and efficient primitives, such as Elliptic Curve Diffie-Hellman (ECDH) key agreement, HMAC-based key derivation function (HKDF), and SHA2.
 This document is a product of the Crypto Forum Research Group (CFRG) in the IRTF.

 HTTP Semantics

 The Hypertext Transfer Protocol (HTTP) is a stateless application-level protocol for distributed, collaborative, hypertext information systems. This document describes the overall architecture of HTTP, establishes common terminology, and defines aspects of the protocol that are shared by all versions. In this definition are core protocol elements, extensibility mechanisms, and the "http" and "https" Uniform Resource Identifier (URI) schemes.
 This document updates RFC 3864 and obsoletes RFCs 2818, 7231, 7232, 7233, 7235, 7538, 7615, 7694, and portions of 7230.

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Randomness Requirements for Security

 Security systems are built on strong cryptographic algorithms that foil pattern analysis attempts. However, the security of these systems is dependent on generating secret quantities for passwords, cryptographic keys, and similar quantities. The use of pseudo-random processes to generate secret quantities can result in pseudo-security. A sophisticated attacker may find it easier to reproduce the environment that produced the secret quantities and to search the resulting small set of possibilities than to locate the quantities in the whole of the potential number space.
 Choosing random quantities to foil a resourceful and motivated adversary is surprisingly difficult. This document points out many pitfalls in using poor entropy sources or traditional pseudo-random number generation techniques for generating such quantities. It recommends the use of truly random hardware techniques and shows that the existing hardware on many systems can be used for this purpose. It provides suggestions to ameliorate the problem when a hardware solution is not available, and it gives examples of how large such quantities need to be for some applications. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 URI Template

 A URI Template is a compact sequence of characters for describing a range of Uniform Resource Identifiers through variable expansion. This specification defines the URI Template syntax and the process for expanding a URI Template into a URI reference, along with guidelines for the use of URI Templates on the Internet. [STANDARDS-TRACK]

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 The Transport Layer Security (TLS) Protocol Version 1.3

 This document specifies version 1.3 of the Transport Layer Security (TLS) protocol. TLS allows client/server applications to communicate over the Internet in a way that is designed to prevent eavesdropping, tampering, and message forgery.
 This document updates RFCs 5705 and 6066, and obsoletes RFCs 5077, 5246, and 6961. This document also specifies new requirements for TLS 1.2 implementations.

 Padding Policies for Extension Mechanisms for DNS (EDNS(0))

 RFC 7830 specifies the "Padding" option for Extension Mechanisms for DNS (EDNS(0)) but does not specify the actual padding length for specific applications. This memo lists the possible options ("padding policies"), discusses the implications of each option, and provides a recommended (experimental) option.

 DNS Queries over HTTPS (DoH)

 This document defines a protocol for sending DNS queries and getting DNS responses over HTTPS. Each DNS query-response pair is mapped into an HTTP exchange.

 The Proxy-Status HTTP Response Header Field

 Informative References

 On the Security of Public Key Protocols

 IEEE Transactions on Information Theory, Vol. IT-29, No. 2

 Oblivious DNS - Strong Privacy for DNS Queries

 Princeton University

 Princeton University

 Princeton University

 Salesforce

 Recognizing the privacy vulnerabilities associated with DNS queries,
 a number of standards have been developed and services deployed that
 that encrypt a user's DNS queries to the recursive resolver and thus
 obscure them from some network observers and from the user's Internet
 service provider. However, these systems merely transfer trust to a
 third party. We argue that no single party should be able to
 associate DNS queries with a client IP address that issues those
 queries. To this end, this document specifies Oblivious DNS (ODNS),
 which introduces an additional layer of obfuscation between clients
 and their queries. To accomplish this, ODNS uses its own
 authoritative namespace; the authoritative servers for the ODNS
 namespace act as recursive resolvers for the DNS queries that they
 receive, but they never see the IP addresses for the clients that
 initiated these queries. The ODNS experimental protocol is
 compatible with existing DNS infrastructure.

 Work in Progress

 Oblivious HTTP

 Mozilla

 Cloudflare

 Work in Progress

 Forwarded HTTP Extension

 This document defines an HTTP extension header field that allows proxy components to disclose information lost in the proxying process, for example, the originating IP address of a request or IP address of the proxy on the user-agent-facing interface. In a path of proxying components, this makes it possible to arrange it so that each subsequent component will have access to, for example, all IP addresses used in the chain of proxied HTTP requests.
 This document also specifies guidelines for a proxy administrator to anonymize the origin of a request.

 Client Subnet in DNS Queries

 This document describes an Extension Mechanisms for DNS (EDNS0) option that is in active use to carry information about the network that originated a DNS query and the network for which the subsequent response can be cached. Since it has some known operational and privacy shortcomings, a revision will be worked through the IETF for improvement.

 Use of Generic Proxy Services
 Using DoH over anonymizing proxy services such as Tor can also achieve the desired goal of separating
query origins from their contents. However, there are several reasons why such systems are undesirable
as contrasted with Oblivious DoH:
 Tor is meant to be a generic connection-level anonymity system, and it incurs higher latency costs
and protocol complexity for the purpose of proxying individual DNS queries. In contrast, Oblivious DoH
is a lightweight protocol built on DoH, implemented as an application-layer proxy, that can be enabled
as a default mode for users that need increased privacy.
 As a one-hop proxy, Oblivious DoH encourages connectionless proxies to mitigate Client query correlation
with few round trips. In contrast, multi-hop systems such as Tor often run secure connections (TLS) end to end,
which means that DoH servers could track queries over the same connection. Using a fresh DoH connection
per query would incur a non-negligible penalty in connection setup time.

 Acknowledgments
 This work is inspired by Oblivious DNS . Thanks to all of the
authors of that document. Thanks to
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 , and

for their feedback and input.

 Authors' Addresses

 Apple Inc.

 One Apple Park Way
 Cupertino
 California
 95014
 United States of America

 ekinnear@apple.com

 Fastly

 mcmanus@ducksong.com

 Apple Inc.

 One Apple Park Way
 Cupertino
 California
 95014
 United States of America

 tpauly@apple.com

 Cloudflare

 101 Townsend St
 San Francisco
 California
 94107
 United States of America

 vermatanyax@gmail.com

 Cloudflare

 101 Townsend St
 San Francisco
 California
 94107
 United States of America

 caw@heapingbits.net

