
RFC 9765
RADIUS/1.1: Leveraging Application-Layer Protocol
Negotiation (ALPN) to Remove MD5

Abstract
This document defines Application-Layer Protocol Negotiation (ALPN) extensions for use with
RADIUS/TLS and RADIUS/DTLS. These extensions permit the negotiation of an application
protocol variant of RADIUS called "RADIUS/1.1". No changes are made to RADIUS/UDP or RADIUS/
TCP. The extensions allow the negotiation of a transport profile where the RADIUS shared secret
is no longer used, and all MD5-based packet authentication and attribute obfuscation methods
are removed.

This document updates RFCs 2865, 2866, 5176, 6613, 6614, and 7360.

Stream: Internet Engineering Task Force (IETF)
RFC: 9765
Updates: 2865, 2866, 5176, 6613, 6614, 7360
Category: Experimental
Published: April 2025
ISSN: 2070-1721
Author: A. DeKok

FreeRADIUS

Status of This Memo
This document is not an Internet Standards Track specification; it is published for examination,
experimental implementation, and evaluation.

This document defines an Experimental Protocol for the Internet community. This document is a
product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF
community. It has received public review and has been approved for publication by the Internet
Engineering Steering Group (IESG). Not all documents approved by the IESG are candidates for
any level of Internet Standard; see Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9765

Copyright Notice
Copyright (c) 2025 IETF Trust and the persons identified as the document authors. All rights
reserved.

DeKok Experimental Page 1

https://www.rfc-editor.org/rfc/rfc9765
https://www.rfc-editor.org/rfc/rfc2865
https://www.rfc-editor.org/rfc/rfc2866
https://www.rfc-editor.org/rfc/rfc5176
https://www.rfc-editor.org/rfc/rfc6613
https://www.rfc-editor.org/rfc/rfc6614
https://www.rfc-editor.org/rfc/rfc7360
https://www.rfc-editor.org/info/rfc9765

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

2. Terminology

3. The RADIUS/1.1 Transport Profile for RADIUS

3.1. ALPN Name for RADIUS/1.1

3.2. Operation of ALPN

3.3. Configuration of ALPN for RADIUS/1.1

3.3.1. Using Protocol-Error for Signaling ALPN Failure

3.3.2. Tabular Summary

3.4. Miscellaneous Items

3.5. Session Resumption

4. RADIUS/1.1 Packet and Attribute Formats

4.1. RADIUS/1.1 Packet Format

4.2. The Token Field

4.2.1. Sending Packets

4.2.2. Receiving Packets

5. Attribute Handling

5.1. Obfuscated Attributes

5.1.1. User-Password

5.1.2. CHAP-Challenge

5.1.3. Tunnel-Password

5.1.4. Vendor-Specific Attributes

5.2. Message-Authenticator

5.3. Message-Authentication-Code

5.4. CHAP, MS-CHAP, and Similar Attributes

3

6

7

7

8

8

12

12

14

14

15

15

16

16

18

18

19

19

20

20

20

21

21

22

RFC 9765 RADIUS/1.1 April 2025

DeKok Experimental Page 2

https://trustee.ietf.org/license-info

5.5. Original-Packet-Code

6. Other Considerations When Using ALPN

6.1. Protocol-Error

6.2. Status-Server

6.3. Proxies

7. Other RADIUS Considerations

7.1. Crypto-Agility

7.2. Error-Cause Attribute

7.3. Future Standards

8. Privacy Considerations

9. Security Considerations

10. IANA Considerations

11. References

11.1. Normative References

11.2. Informative References

Acknowledgments

Author's Address

22

23

23

24

24

25

25

25

26

27

27

28

28

28

29

31

31

1. Introduction
The RADIUS protocol uses MD5 to authenticate packets and to obfuscate
certain attributes. Additional transport protocols were defined for TCP , TLS ,
and DTLS . However, those transport protocols still use MD5 to authenticate individual
packets. That is, the shared secret was used along with MD5, even when the RADIUS packets
were being transported in (D)TLS. At the time, the consensus of the RADEXT Working Group was
that this continued use of MD5 was acceptable. TLS was seen as a simple "wrapper" around
RADIUS, while using a fixed shared secret. The intention at the time was to allow the use of
(D)TLS while making essentially no changes to the basic RADIUS encoding, decoding,
authentication, and packet validation.

[RFC2865] [RFC1321]
[RFC6613] [RFC6614]

[RFC7360]

RFC 9765 RADIUS/1.1 April 2025

DeKok Experimental Page 3

Issues of MD5 security have been known for decades, most notably in and in
, among others. The reliance on MD5 for security makes it impossible to use RADIUS

in secure systems that forbid the use of digest algorithms with known vulnerabilities. For
example, FIPS 140 forbids systems from relying on insecure cryptographic methods for security

.

While the use of MD5 in RADIUS/TLS has not been proven to be insecure, it has not been proven
to be secure. This gap means that it is difficult to use RADIUS in organizations that require the
use of systems that have proven security. Those organizations tend to simply ban the use of
insecure digests such as MD5 entirely, even if the use of MD5 has no known security impact.
While the resulting system might still not be secure, it at least does not contain any known
insecurities.

In addition, the use of MD5 in RADIUS/TLS and RADIUS/DLTS adds no security or privacy over
that provided by TLS. In hindsight, the decision of the RADEXT Working Group to retain MD5 for
historic RADIUS/TLS was likely wrong. It was an easy decision to make in the short term, but it
has caused ongoing problems that this document addresses. The author of this document played
a part in that original decision, which is now being corrected by this document.

This document defines an Application-Layer Protocol Negotiation (ALPN) extension
for RADIUS over (D)TLS that removes the need to use MD5 for (D)TLS, which we call RADIUS/1.1.
This specification makes no changes to UDP or TCP transport. The RADIUS/1.1 protocol can be
best understood as a transport profile for RADIUS over TLS, rather than a wholesale revision of
the RADIUS protocol.

Systems that implement this transport profile can be more easily verified to be FIPS 140
compliant. A preliminary implementation has shown that only minor code changes are required
to support RADIUS/1.1 on top of an existing RADIUS/TLS server implementation. These include:

A method to set the list of supported ALPN protocols before the TLS handshake starts.
A method to query if ALPN has chosen a protocol (and if yes, which protocol was chosen)
after the TLS handshake has completed.
Changes to the packet encoder and decoder, so that the individual packets are not
authenticated, and no attribute is encoded with the historic obfuscation methods.

That is, the bulk of the ALPN protocol can be left to the underlying TLS implementation. This
document discusses the ALPN exchange in detail in order to give simplified descriptions for the
reader, and so that the reader does not have to read or understand all of .

The detailed list of changes from historic TLS-based transports to RADIUS/1.1 is as follows:

ALPN is used for negotiation of this extension.
TLS 1.3 or later is required.
All uses of the RADIUS shared secret have been removed.
The now unused Request and Response Authenticator fields have been repurposed to carry
an opaque Token that identifies requests and responses.

[RFC6151] Section 3
of [RFC6421]

[FIPS-140-3]

[RFC7301]

•
•

•

[RFC7301]

•
•
•
•

RFC 9765 RADIUS/1.1 April 2025

DeKok Experimental Page 4

https://www.rfc-editor.org/rfc/rfc6421#section-3

The functionality of the Identifier field has been replaced by the Token field, and the space
previously taken by the Identifier field is now reserved and unused.
The Message-Authenticator attribute () is not sent in any packet, and is
ignored if received.
Attributes such as User-Password, Tunnel-Password, and MS-MPPE keys are sent encoded as
"text" () or "octets" (), without the previous MD5-
based obfuscation. This obfuscation is no longer necessary, as the data is secured and kept
private through the use of TLS.
The conclusion of the efforts stemming from is that crypto-agility in RADIUS is
best done via a TLS wrapper, and not by extending the RADIUS protocol.

 is updated to allow the Error-Cause attribute to appear in Access-Reject packets.

The following items are left unchanged from historic TLS-based transports for RADIUS:

The RADIUS packet header is the same size, and the Code and Length fields (
) have the same meaning as before.

The default 4096-octet packet size from is unchanged, although
 can still be leveraged to use larger packets.

All attributes that have simple encodings (that is, attributes that do not use MD5
obfuscation) have the same encoding and meaning as before.
As this extension is a transport profile for one "hop" (client-to-server connection), it does not
impact any other connection used by a client or server. The only systems that are aware that
this transport profile is in use are the client and server who have negotiated the use of this
extension on a particular shared connection.
This extension uses the same ports (2083/tcp and 2083/udp) that are defined for RADIUS/TLS

 and RADIUS/DTLS .

A major benefit of this extension is that a server that implements it can also be more easily
verified for FIPS 140 compliance. That is, a server can remove all uses of MD5, which means that
those algorithms are provably not used for security purposes. In that case, however, the server
will not support the Challenge Handshake Authentication Protocol (CHAP) or any authentication
method that uses MD5. The choice of which authentication method to accept is always left to the
server. This specification does not change any authentication method carried in RADIUS, and
does not mandate (or forbid) the use of any authentication method for any system.

As for proxies, there was never a requirement that proxies implement CHAP or Microsoft CHAP
(MS-CHAP) authentication. So far as a proxy is concerned, attributes relating to CHAP and MS-
CHAP are simply opaque data that is transported unchanged to the next hop. Therefore, it is
possible for a FIPS 140 compliant proxy to transport authentication methods that depend on
MD5, so long as that data is forwarded to a server that supports those methods.

We reiterate that the decision to support (or not support) any authentication method is entirely
site local, and is not a requirement of this specification. The contents or meaning of any RADIUS
attribute other than the Message-Authenticator (and similar attributes) are not modified. The
only change to the Message-Authenticator attribute is that it is no longer used in RADIUS/1.1.

•

• [RFC3579], Section 3.2

•
[RFC8044], Section 3.4 [RFC8044], Section 3.5

• [RFC6421]

• [RFC5176]

• [RFC2865],
Section 3

• [RFC2865], Section 3
[RFC7930]

•

•

•
[RFC6614] [RFC7360]

RFC 9765 RADIUS/1.1 April 2025

DeKok Experimental Page 5

https://www.rfc-editor.org/rfc/rfc3579#section-3.2
https://www.rfc-editor.org/rfc/rfc8044#section-3.4
https://www.rfc-editor.org/rfc/rfc8044#section-3.5
https://www.rfc-editor.org/rfc/rfc2865#section-3
https://www.rfc-editor.org/rfc/rfc2865#section-3

Unless otherwise described in this document, all RADIUS requirements apply to this extension.
That is, this specification defines a transport profile for RADIUS. It is not an entirely new
protocol, and it defines only minor changes to the existing RADIUS protocol. It does not change
the RADIUS packet format, attribute format, etc. This specification is compatible with all RADIUS
attributes of the past, present, and future.

This specification is compatible with existing implementations of RADIUS/TLS and RADIUS/DTLS.
Systems that implement this specification can fall back to historic RADIUS/TLS if no ALPN
signaling is performed, and the local configuration permits such fallback.

This specification is compatible with all existing RADIUS specifications. There is no need for any
RADIUS specification to mention this transport profile by name or to make provisions for this
specification. This document defines how to transform RADIUS into RADIUS/1.1, and no further
discussion of that transformation is necessary.

We note that this document makes no changes to previous RADIUS specifications. Existing
RADIUS implementations can continue to be used without modification. Where previous
specifications are explicitly mentioned and updated, those updates or changes apply only when
the RADIUS/1.1 transport profile is being used.

In short, when negotiated on a connection, the RADIUS/1.1 transport profile permits
implementations to avoid MD5 when authenticating packets or when obfuscating certain
attributes.

2. Terminology
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

The following list describes the terminology and abbreviations that are used in this document.

ALPN
Application-Layer Protocol Negotiation (as defined in).

RADIUS
Remote Authentication Dial-In User Service (as defined in , , and

, among others).

While this protocol can be viewed as "RADIUS/1.0", for simplicity and historical compatibility,
we keep the name "RADIUS".

RADIUS/UDP
RADIUS over the User Datagram Protocol (see , , and , among
others).

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

[RFC7301]

[RFC2865] [RFC2866]
[RFC5176]

[RFC2865] [RFC2866] [RFC5176]

RFC 9765 RADIUS/1.1 April 2025

DeKok Experimental Page 6

RADIUS/TCP
RADIUS over the Transmission Control Protocol .

RADIUS/TLS
RADIUS over Transport Layer Security .

RADIUS/DTLS
RADIUS over Datagram Transport Layer Security .

RADIUS over TLS
Refers to any RADIUS packets transported over TLS or DTLS. This terminology is used instead
of alternatives such as "RADIUS/(D)TLS" or "either RADIUS/TLS or RADIUS/DTLS". This term is
generally used when referring to TLS-layer requirements for RADIUS packet transport.

historic RADIUS/TLS
Refers to RADIUS over (D)TLS (as defined in and). This term does not
include the protocol defined in this specification.

RADIUS/1.1
RADIUS version 1.1, i.e., the transport profile defined in this document. We use RADIUS/1.1 to
refer interchangeably to TLS and DTLS transport.

TLS
Transport Layer Security. Generally, when we refer to TLS in this document, we are referring
interchangeably to TLS or DTLS transport.

[RFC6613]

[RFC6614]

[RFC7360]

[RFC6614] [RFC7360]

3. The RADIUS/1.1 Transport Profile for RADIUS
This section describes the ALPN transport profile in detail. It first gives the name used for ALPN,
and then describes how ALPN is configured and negotiated by the client and server. It then
concludes by discussing TLS issues such as what to do for ALPN during session resumption.

3.1. ALPN Name for RADIUS/1.1
The ALPN name defined for RADIUS/1.1 is as follows:

"radius/1.1"
The protocol defined by this specification.

Where ALPN is not configured or is not received in a TLS connection, systems supporting ALPN
 use RADIUS/1.1.

Where ALPN is configured, the client signals support by sending ALPN strings listing which
protocols it supports. The server can accept one of these proposals and reply with a matching
ALPN string, or reject this proposal and not reply with any ALPN string. A full walkthrough of
the protocol negotiation is given below.

Implementations signal ALPN "radius/1.1" in order for it to be used in a connection.

MUST NOT

MUST

RFC 9765 RADIUS/1.1 April 2025

DeKok Experimental Page 7

The next step in defining RADIUS/1.1 is to review how ALPN works.

1)

2)

3)

4)

3.2. Operation of ALPN
In order to provide a high-level description of ALPN for readers who are not familiar with the
details of , we provide a brief overview here.

Once a system has been configured to support ALPN, it is negotiated on a per-connection basis as
per . The negotiation proceeds as follows:

The client sends an ALPN extension in the ClientHello. This extension lists one or more
application protocols by name. These names are the protocols that the client is claiming to
support.
The server receives the extension and validates the application protocol name(s) against
the list it has configured.

If the server finds no acceptable common protocols (ALPN or otherwise), it closes the
connection.

Otherwise, the server returns a ServerHello with either no ALPN extension or an ALPN
extension containing only one named application protocol, which needs to be one of the
names proposed by the client.

If the client did not signal ALPN, or the server does not accept the ALPN proposal, the
server does not reply with any ALPN name.

The client receives the ServerHello, validates the received application protocol (if any)
against the name(s) it sent, and records which application protocol was chosen.

This check is necessary in order for the client to both know which protocol the server has
selected, and to validate that the protocol sent by the server is one that is acceptable to the
client.

The next step in defining RADIUS/1.1 is to define how ALPN is configured on the client and
server and to give more detailed requirements on its configuration and operation.

[RFC7301]

[RFC7301]

3.3. Configuration of ALPN for RADIUS/1.1
Clients or servers supporting this specification can do so by extending their TLS configuration
through the addition of a new configuration variable, called "Version" here. The exact name
given below does not need to be used, but it is that administrative interfaces or
programming interfaces use a similar name in order to provide consistent terminology. This
variable controls how the implementation signals use of this protocol via ALPN.

When set, this variable should contain the list of permitted RADIUS versions as numbers, e.g.,
"1.0" or "1.1". The implementation may allow multiple values in one variable, allow multiple
variables, or instead use two configurations for the "minimum" and "maximum" allowed

RECOMMENDED

RFC 9765 RADIUS/1.1 April 2025

DeKok Experimental Page 8

versions. We assume here that there is one variable, which can contain either no value or a list
of one or more versions that the current implementation supports. In this specification, the
possible values, ALPN strings, and corresponding interpretations are:

This configuration is also extensible to future RADIUS versions if that extension becomes
necessary. New values and ALPN names can simply be added to the list. Implementations can
then negotiate the highest version that is supported by both client and server.

Implementations support both historic RADIUS/TLS and RADIUS/1.1. Such
implementations set the default value for this configuration variable to "1.0, 1.1". This
setting ensures that both versions of RADIUS can be negotiated.

Implementations support only RADIUS/1.1. In this case, the default value for this
configuration variable be "1.1". This behavior is , as it is incompatible
with historic RADIUS/TLS. This behavior can only be a reasonable default when all (or nearly all)
RADIUS clients have been updated to support RADIUS/1.1.

A more detailed definition of the variable and the meaning of the values is given below.

Configuration Variable Name
Version

For "Value":
If unset, ALPN is not used.

Any connection use historic RADIUS/TLS.

This variable is included here only for logical completeness. Implementations of this
specification be configured to always send one or more ALPN strings. This data
signals that the implementation is capable of performing ALPN negotiation, even if it is
not currently configured to use RADIUS/1.1.

Client Behavior
The client send any protocol name via ALPN.

Server Behavior
The server signal any protocol name via ALPN.

Value ALPN String(s) Interpretation

unset no ALPN strings are sent

1.0 radius/1.0 require historic RADIUS/TLS

1.0, 1.1 radius/1.0, radius/1.1 allow either historic RADIUS/TLS or RADIUS/1.1

1.1 radius/1.1 require RADIUS/1.1

Table 1

SHOULD
MUST

MAY
MUST NOT RECOMMENDED

A.

MUST

SHOULD

MUST NOT

MUST NOT

RFC 9765 RADIUS/1.1 April 2025

DeKok Experimental Page 9

If the server receives an ALPN name from the client, it close the
connection. Instead, it simply does not reply with ALPN and finishes the TLS
connection setup as defined for historic RADIUS/TLS.

Note that if a client sends "radius/1.1", the client will see that the server failed to
acknowledge this request and will close the connection. For any other client
configuration, the connection will use historic RADIUS/TLS.

If set to "1.0", "1.0, 1.1", "1.1", or future values:

Client Behavior
The client send the ALPN string(s) associated with the configured version. For
example, send "radius/1.0" for "1.0".

The client will receive either no ALPN response from the server; or it will receive an
ALPN response of one version string that match one of the strings it sent; or else
they will receive a TLS alert of "no_application_protocol" (120).

If the connection remains open, the client treat the connection as using the
matching ALPN version.

Server Behavior
If the server receives no ALPN name from the client, it use historic RADIUS/TLS.

If the server receives one or more ALPN names from the client, it reply with the
highest mutually supported version and then use the latest supported version for this
connection.

If the server receives one or more ALPN names from the client, but none of the names
match the versions supported by (or configured on) the server, it reply with a
TLS alert of "no_application_protocol" (120), and then it close the TLS
connection.

These requirements for negotiation are not specific to RADIUS/1.1; therefore, they can
be used unchanged if any new version of RADIUS is defined.

By requiring the default configuration to allow historic RADIUS/TLS, implementations will be
able to negotiate both historic RADIUS/TLS connections and also RADIUS/1.1 connections. Any
other recommended default setting would prevent either the negotiation of historic RADIUS/TLS
or prevent the negotiation of RADIUS/1.1.

Once administrators verify that both ends of a connection support RADIUS/1.1, and that it has
been negotiated successfully, the configurations be updated to require RADIUS/1.1. The
connections should be monitored after this change to ensure that the systems continue to
remain connected. If there are connection issues, then the configuration should be reverted to
allowing both "radius/1.0" and "radius/1.1" ALPN strings, until the administrator has resolved the
connection problems.

MUST NOT

B.

MUST

MUST

MUST

MUST

MUST

MUST
MUST

SHOULD

RFC 9765 RADIUS/1.1 April 2025

DeKok Experimental Page 10

We reiterate that systems implementing this specification, but which are configured with
settings that forbid RADIUS/1.1, will behave largely the same as systems that do not implement
this specification. The only difference is that clients may send the ALPN name "radius/1.0".

Systems implementing RADIUS/1.1 be configured by default to forbid that protocol.
That setting exists mainly for completeness, and to give administrators the flexibility to control
their own deployments.

While does not discuss the possibility of the server sending a TLS alert of
"no_application_protocol" (120) when the client does not use ALPN, this behavior appears to be
useful. As such, servers send a TLS alert of "no_application_protocol" (120) when the client
does not use ALPN.

However, some TLS implementations may not permit an application to send a TLS alert of its
choice at a time of its choice. This limitation means that it is not always possible for an
application to send the TLS alert as discussed in the previous section. The impact is that an
implementation may attempt to connect and then see that the connection fails, but it may not be
able to determine why that failure has occurred. Implementers and administrators should be
aware that unexplained connection failures may be due to ALPN issues.

The server send this alert during the ClientHello if it requires ALPN but does not receive it.
That is, there may not always be a need to wait for the TLS connection to be fully established
before realizing that no common ALPN protocol can be negotiated.

Where the client does perform signaling via ALPN, and the server determines that there is no
compatible application protocol name, then as per , it send a TLS
alert of "no_application_protocol" (120).

The server close the connection whether or not the server sent a TLS alert for no
compatible ALPN. The above requirements on ALPN apply to both new sessions and to resumed
sessions.

In contrast, there is no need for the client to signal that there are no compatible application
protocol names. The client sends zero or more protocol names, and the server responds as
above. From the point of view of the client, the list it sent results in either a connection failure or
a connection success.

It is that the server logs a descriptive error in this situation, so that an
administrator can determine why a particular connection failed. The log message
include information about the other end of the connection, such as the IP address, certificate
information, etc. Similarly, when the client receives a TLS alert of
"no_application_protocol" (120), it log a descriptive error message. Such error messages
are critical for helping administrators diagnose connectivity issues.

SHOULD NOT

[RFC7301]

MAY

MAY

[RFC7301], Section 3.2 MUST

MUST

RECOMMENDED
SHOULD

SHOULD

RFC 9765 RADIUS/1.1 April 2025

DeKok Experimental Page 11

https://www.rfc-editor.org/rfc/rfc7301#section-3.2

3.3.1. Using Protocol-Error for Signaling ALPN Failure

When it is not possible to send a TLS alert of "no_application_protocol" (120), then the only
remaining method for one party to signal the other is to send application data inside of the TLS
tunnel. Therefore, for the situation when one end of a connection determines that it requires
ALPN, while the other end does not support ALPN, then the end requiring ALPN send a
Protocol-Error packet inside of the tunnel and then close the connection. If this
is done, the Token field of the Protocol-Error packet cannot be copied from any request;
therefore, that field be set to all zeros.

The Protocol-Error packet contain a Reply-Message attribute with a textual string
describing the cause of the error. The packet also contain an Error-Cause attribute, with
value 406 (Unsupported Extension). The packet contain other attributes.

An implementation sending this packet could bypass any RADIUS encoder and simply write this
packet as a predefined, fixed set of data to the TLS connection. That process would likely be
simpler than trying to call the normal RADIUS packet encoder to encode a reply packet with no
corresponding request packet.

As this packet is an unexpected response packet, existing client implementations of RADIUS over
TLS will ignore it. They may either log an error and close the connection, or they may discard
the packet and leave the connection open. If the connection remains open, the end supporting
ALPN will close the connection, so there will be no side effects from sending this packet.
Therefore, while using a Protocol-Error packet in this way is unusual, it is both informative and
safe.

The purpose of this packet is not to have the other end of the connection automatically
determine what went wrong and fix it. Instead, the packet is intended to be (eventually) seen by
an administrator, who can then take remedial action.

MAY
[RFC7930] MUST

MUST

SHOULD
SHOULD

SHOULD NOT

3.3.2. Tabular Summary

The preceding text gives a large number of recommendations. In order to give a simpler
description of the outcomes, a table of possible behaviors for client/server values of the Version
variable is given below. The row and column headings are the RADIUS version numbers sent in
ALPN (or no ALPN). The contents of the table are the resulting RADIUS version that is negotiated.
For clarity, only the RADIUS version numbers have been given, and not the full ALPN strings
(e.g., "radius/1.0").

This table and the names given below are for informational and descriptive purposes only.

Client Server

no ALPN 1.0 1.0, 1.1 1.1

no ALPN TLS TLS TLS Close-S

RFC 9765 RADIUS/1.1 April 2025

DeKok Experimental Page 12

Client Server

no ALPN 1.0 1.0, 1.1 1.1

1.0 TLS TLS TLS Alert

1.0, 1.1 TLS TLS 1.1 1.1

1.1 Close-C Alert 1.1 1.1

Table 2: Possible Outcomes for ALPN

The table entries above have the following meaning:

Alert
The client sends ALPN, and the server does not agree to the client's ALPN proposal. The
server replies with a TLS alert of "no_application_protocol" (120) and then closes the TLS
connection.

As the server replies with a TLS alert, the Protocol-Error packet is not used here.

Close-C
The client sends ALPN, but the server does not respond with ALPN. The client closes the
connection.

As noted in the previous section, the client send a Protocol-Error packet to the server
before closing the connection.

Close-S
The client does not send ALPN string(s), but the server requires ALPN. The server closes the
connection.

As noted in the previous section, the server send a Protocol-Error packet to the client
before closing the connection. The server also send a TLS alert of
"no_application_protocol" (120) before closing the connection.

TLS
Historic RADIUS/TLS is used. The client either sends no ALPN string or sends "radius/1.0". The
server either replies with no ALPN string or with "radius/1.0". The connection use
historic RADIUS/TLS.

1.1
The client sends the ALPN string "radius/1.1". The server acknowledges this negotiation with
a reply of "radius/1.1", and then RADIUS/1.1 is used.

Implementations should note that this table may be extended in future specifications. The above
text is informative, and does not mandate that only the above ALPN strings are used. The actual
ALPN takes place as defined in the preceding sections of this document and in .

MAY

MAY
MAY

MUST

[RFC7301]

RFC 9765 RADIUS/1.1 April 2025

DeKok Experimental Page 13

3.4. Miscellaneous Items
Implementations of this specification require TLS version 1.3 or later.

The use of the ALPN string "radius/1.0" is technically unnecessary, as it is largely equivalent to
not sending any ALPN string. However, that value is useful for RADIUS administrators. A system
that sends the ALPN string "radius/1.0" is explicitly signaling that it supports ALPN, but that it is
not currently configured to support RADIUS/1.1. That information can be used by administrators
to determine which devices are capable of ALPN.

The use of the ALPN string "radius/1.0" also permits server implementations to send a TLS alert
of "no_application_protocol" (120) when it cannot find a matching ALPN string. Experiments
with TLS library implementations suggest that in some cases it is possible to send that TLS alert
when ALPN is not used. However, such a scenario is not discussed in and is likely not
universal. As a result, ALPN as defined in permits servers to send that TLS alert in
situations where it would be otherwise forbidden or perhaps unsupported.

Finally, defining ALPN strings for all known RADIUS versions will make it easier to support
additional ALPN strings if that functionality is ever needed.

MUST

[RFC7301]
[RFC7301]

3.5. Session Resumption
 states that ALPN is negotiated on each connection, even if session

resumption is used:

When session resumption or session tickets are used, the previous contents
of this extension are irrelevant, and only the values in the new handshake messages are
considered.

(Note: RFC 5077 was obsoleted by .)

In order to prevent down-bidding attacks, RADIUS systems that negotiate the "radius/1.1"
protocol associate that information with the session ticket and enforce the use of "radius/
1.1" on session resumption. That is, if "radius/1.1" was negotiated for a session, both clients and
servers behave as if the RADIUS/1.1 variable was set to "require" for that session.

A client that is resuming a "radius/1.1" connection advertise only the capability to do
"radius/1.1" for the resumed session. That is, even if the client configuration allows historic
RADIUS/TLS for new connections, it signal "radius/1.1" when resuming a session that had
previously negotiated "radius/1.1".

Similarly, when a server does resumption for a session that had previously negotiated "radius/
1.1", if the client attempts to resume the sessions without signaling the use of RADIUS/1.1, the
server close the connection. The server send an appropriate TLS error, and also

 log a descriptive message as described above.

[RFC7301], Section 3.1

[RFC5077]

[RFC8446]

MUST

MUST

MUST

MUST

MUST MUST
SHOULD

RFC 9765 RADIUS/1.1 April 2025

DeKok Experimental Page 14

https://www.rfc-editor.org/rfc/rfc7301#section-3.1

In contrast, there is no requirement for a client or server to force the use of RADIUS/TLS from
 on session resumption. Clients are free to signal support for "radius/1.1" on resumed

sessions, even if the original session did not negotiate "radius/1.1". Servers are free to accept this
request and to negotiate the use of "radius/1.1" for such sessions.

[RFC6614]

4. RADIUS/1.1 Packet and Attribute Formats
This section describes the application-layer data that is sent inside of (D)TLS when using the
RADIUS/1.1 protocol. Unless otherwise discussed herein, the application-layer data is unchanged
from historic RADIUS. This protocol is only used when "radius/1.1" has been negotiated by both
ends of a connection.

4.1. RADIUS/1.1 Packet Format
When RADIUS/1.1 is used, the RADIUS header is modified from standard RADIUS. While the
header has the same size, some fields have different meanings. The Identifier and the Request
and Response Authenticator fields are no longer used in RADIUS/1.1. Any operations that depend
on those fields be performed. As packet authentication, secrecy, and security are
handled by the TLS layer, RADIUS-specific cryptographic primitives are no longer needed or
used in RADIUS/1.1.

A summary of the RADIUS/1.1 packet format is shown below. The fields are transmitted from left
to right.

Code
The Code field is one octet and identifies the type of RADIUS packet.

The meaning of the Code field is unchanged from previous RADIUS specifications.

Reserved-1
The Reserved-1 field is one octet.

MUST NOT

Figure 1: The RADIUS/1.1 Packet Format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Code | Reserved-1 | Length |
+-+
| Token |
+-+
| |
| Reserved-2 |
| |
+-+
| Attributes ...
+-+-+-+-+-+-+-+-+-+-+-+-+-

RFC 9765 RADIUS/1.1 April 2025

DeKok Experimental Page 15

This field was previously used as the "Identifier" in historic RADIUS/TLS. It is now unused, as
the Token field replaces it both as the way to identify requests and to associate responses
with requests.

When sending packets, the Reserved-1 field be set to zero. The Reserved-1 field be
ignored when receiving a packet.

Length
The Length field is two octets.

The meaning of the Length field is unchanged from previous RADIUS specifications.

Token
The Token field is four octets and aids in matching requests and replies, as a replacement for
the Identifier field. The RADIUS server can detect a duplicate request if it receives the same
Token value for two packets on a particular connection.

All values are possible for the Token field. Implementations treat the Token as an
opaque blob when comparing Token values.

Further requirements are given below in Section 4.2.1 for sending packets and in Section 4.2.2
for receiving packets.

Reserved-2
The Reserved-2 field is twelve (12) octets in length.

These octets be set to zero when sending a packet.

These octets be ignored when receiving a packet.

These octets are reserved for future protocol extensions.

MUST MUST

MUST

MUST

MUST

4.2. The Token Field
This section describes in more detail how the Token field is used.

4.2.1. Sending Packets

The Token field change for every new unique packet that is sent on the same connection.
For DTLS transport, it is possible to retransmit duplicate packets, in which case the Token value

 be changed when a duplicate packet is (re)sent. When the contents of a retransmitted
packet change for any reason (such as changing Acct-Delay-Time as discussed in

), the Token value be changed. Note that on reliable transports, packets are
never retransmitted; therefore, every new packet that is sent has a unique Token value.

We note that in previous RADIUS specifications, the Identifier field could have the same value
for different packets on the same connection. For example, Access-Request (Code 1) and
Accounting-Request (Code 4) packets could both use ID 3 and still be treated as different packets.

MUST

MUST NOT
[RFC2866],

Section 5.2 MUST

RFC 9765 RADIUS/1.1 April 2025

DeKok Experimental Page 16

https://www.rfc-editor.org/rfc/rfc2866#section-5.2

This overlap requires that RADIUS clients and servers track the Identifier field, not only on a per-
connection basis, but also on a per-Code basis. This behavior adds complexity to
implementations.

In contrast, the Token values be generated from a 32-bit counter that is unique to each
connection. Such a counter be initialized to a random value, taken from a random
number generator, whenever a new connection is opened. The counter then be
incremented for every unique new packet that is sent by the client. Retransmissions of the same
packet use the same unchanged Token value. As the Token value is mandated to be unique
per packet, a duplicate Token value is the only way that a server can detect duplicate
transmissions.

This counter method ensures that the Tokens are unique and are also independent of any Code
value in the RADIUS packet header. This method is mandated because any other method of
generating unique and non-conflicting Token values is more complex, with no additional benefit
and only the likelihood of increased bugs and interoperability issues. Any other method for
generating Token values would require substantially more resources to track outstanding Token
values and their associated expiry times. The chance that initial values could potentially cause
any confusion by being reused across two connections is one in 232, which is acceptable.

The purpose for initializing the Token to a random counter is mainly to aid administrators in
debugging systems. If the Token values always used the same sequence, then it would easier for
a person to confuse different packets that have the same Token value. By instead starting with a
random value, those values are more evenly distributed across the set of allowed values;
therefore, they are more likely to be unique.

As there is no special meaning for the Token, there is no meaning when a counter "wraps"
around from a high value back to zero. The originating system can simply continue to increment
the Token value without taking any special action in that situation.

Once a RADIUS response to a request has been received and there is no need to track the packet
any longer, the Token value can be reused. This reuse happens only when the counter "wraps
around" after 232 packets have been sent over one connection. This method of managing the
counter automatically ensures a long delay (i.e., 232 packets) between multiple uses of the same
Token value. This large number of packets ensures that the only possible situation where there
may be conflict is when a client sends billions of packets a second across one connection, or
when a client sends billions of packets without receiving replies. We suggest that such situations
are vanishingly rare. The best solution to those situations would be to limit the number of
outstanding packets over one connection to a number much lower than billions.

If a RADIUS client has multiple independent subsystems that send packets to a server, each
subsystem open a new connection that is unique to that subsystem. There is no
requirement that all packets go over one particular connection. That is, despite the use of a 32-
bit Token field, RADIUS/1.1 clients are still permitted to open multiple source ports as discussed
in .

MUST
SHOULD

MUST

MUST

MAY

[RFC2865], Section 2.5

RFC 9765 RADIUS/1.1 April 2025

DeKok Experimental Page 17

https://www.rfc-editor.org/rfc/rfc2865#section-2.5

While multiple connections from client to server are allowed, we reiterate the suggestion of
 that a single connection is preferred to multiple connections. The use of a

single connection can improve throughput and latency, while simplifying the client's efforts to
determine server status.

[RFC3539], Section 3.3

4.2.2. Receiving Packets

A server that receives RADIUS/1.1 packets perform packet deduplication for all situations
where it is required by RADIUS. Where RADIUS does not require deduplication (e.g., TLS
transport), the server do deduplication. However, DTLS transport is UDP-based,
and therefore still requires deduplication.

When using RADIUS/1.1, implementations do deduplication only on the Token field, and
not on any other field or fields in the packet header. A server treat the Token as being an
opaque field with no intrinsic meaning. This requirement makes the receiver behavior
independent of the methods by which the Counter is generated.

Where Token deduplication is done, it be done on a per-connection basis. If two packets
that are received on different connections contain the same Token value, then those packets

 be treated as distinct (i.e., different) packets. Systems performing deduplication still
track the packet Code, Length, and Attributes that are associated with a Token value. If it
determines that the sender is reusing Token values for distinct outstanding packets, then an
error should be logged, and the connection be closed. There is no way to negotiate correct
behavior in the protocol. Either both parties operate normally and can communicate, or one end
misbehaves and no communication is possible.

Once a reply has been sent, a system doing deduplication cache the replies as discussed
in :

Each cache entry be purged after a period of time. This time be no less
than 5 seconds, and no more than 30 seconds. After about 30 seconds, most RADIUS
clients and end users will have given up on the authentication request. Therefore, there
is little value in having a larger cache timeout.

This change from RADIUS means that the Identifier field is no longer useful for RADIUS/1.1. The
Reserved-1 field (previously used as the Identifier) be set to zero when encoding all
RADIUS/1.1 packets. Implementations of RADIUS/1.1 that receive packets ignore this field.

MUST

SHOULD NOT

MUST
MUST

MUST

MUST MAY

MUST

SHOULD
[RFC5080], Section 2.2.2

SHOULD SHOULD

MUST
MUST

5. Attribute Handling
Most attributes in RADIUS have no special encoding "on the wire", or any special meaning
between client and server. Unless discussed in this section, all RADIUS attributes are unchanged
in this specification. This requirement includes attributes that contain a tag, as defined in

.[RFC2868]

RFC 9765 RADIUS/1.1 April 2025

DeKok Experimental Page 18

https://www.rfc-editor.org/rfc/rfc3539#section-3.3
https://www.rfc-editor.org/rfc/rfc5080#section-2.2.2

5.1. Obfuscated Attributes
Since the (D)TLS layer provides for connection authentication, integrity checks, and
confidentiality, there is no need to hide the contents of an attribute on a hop-by-hop basis. As a
result, all attributes defined as being obfuscated via the shared secret no longer have the
obfuscation step applied when RADIUS/1.1 is used. Instead, those attributes be encoded
using the encoding for the underlying data type, with any encryption / obfuscation step omitted.
For example, the User-Password attribute is no longer obfuscated and is instead sent as data
type "text".

There are risks from sending passwords over the network, even when they are protected by TLS.
One such risk comes from the common practice of multi-hop RADIUS routing. As all security in
RADIUS is on a hop-by-hop basis, every proxy that receives a RADIUS packet can see (and
modify) all of the information in the packet. Sites wishing to avoid proxies use dynamic
peer discovery , which permits clients to make connections directly to authoritative
servers for a realm.

There are other ways to mitigate these risks. The simplest is to follow the requirements of item
(3) from and also follow , which mandates that
RADIUS over TLS implementations validate the peer before sending any RADIUS traffic.

Another way to mitigate these risks is for the system being authenticated to use an
authentication protocol that never sends passwords (e.g., an Extensible Authentication Protocol
(EAP) method like EAP-pwd), or one that sends passwords protected by a TLS tunnel
(e.g., EAP Tunneled Transport Layer Security (EAP-TTLS)). The processes to choose
and configure an authentication protocol are strongly site dependent, so further discussions of
these issues are outside of the scope of this document. The goal here is to ensure that the reader
has enough information to make an informed decision.

We note that as the RADIUS shared secret is no longer used in this specification, it is no longer
possible or necessary for any attribute to be obfuscated on a hop-by-hop basis using the previous
methods defined for RADIUS.

MUST

SHOULD
[RFC7585]

[RFC6614], Section 3.4 [RFC7360], Section 10.4

[RFC5931]
[RFC5281]

5.1.1. User-Password

The User-Password attribute () be encoded the same as any other
attribute of data type "string" ().

The contents of the User-Password field be at least one octet in length and be
more than 128 octets in length. This limitation is maintained from for
compatibility with historic transports.

Note that the User-Password attribute is not of data type "text". The original reason in
was because the attribute was encoded as an opaque and obfuscated binary blob. This document
does not change the data type of User-Password, even though the attribute is no longer
obfuscated. The contents of the User-Password attribute do not have to be printable text or
UTF-8 data as per the definition of the "text" data type in .

[RFC2865], Section 5.2 MUST
[RFC8044], Section 3.5

MUST MUST NOT
[RFC2865], Section 5.2

[RFC2865]

[RFC8044], Section 3.4

RFC 9765 RADIUS/1.1 April 2025

DeKok Experimental Page 19

https://www.rfc-editor.org/rfc/rfc6614#section-3.4
https://www.rfc-editor.org/rfc/rfc7360#section-10.4
https://www.rfc-editor.org/rfc/rfc2865#section-5.2
https://www.rfc-editor.org/rfc/rfc8044#section-3.5
https://www.rfc-editor.org/rfc/rfc2865#section-5.2
https://www.rfc-editor.org/rfc/rfc8044#section-3.4

However, implementations should be aware that passwords are often printable text, and where
the passwords are printable text, it can be useful to store and display them as printable text.
Where implementations can process non-printable data in the "text" data type, they use the
data type "text" for User-Password.

MAY

5.1.2. CHAP-Challenge

 allows for the CHAP challenge to be taken from either the CHAP-Challenge
attribute () or the Request Authenticator field. Since RADIUS/1.1
connections no longer use a Request Authenticator field, it is no longer possible to use the
Request Authenticator field as the CHAP-Challenge when this transport profile is used.

Clients that send a CHAP-Password attribute () in an Access-Request packet
over a RADIUS/1.1 connection also include a CHAP-Challenge attribute (

).

Proxies may need to receive Access-Request packets over a non-RADIUS/1.1 transport and then
forward those packets over a RADIUS/1.1 connection. In that case, if the received Access-Request
packet contains a CHAP-Password attribute but no CHAP-Challenge attribute, the proxy
create a CHAP-Challenge attribute in the proxied packet using the contents from the incoming
Request Authenticator of the received packet.

[RFC2865], Section 5.3
[RFC2865], Section 5.40

[RFC2865], Section 5.3
MUST [RFC2865], Section

5.40

MUST

5.1.3. Tunnel-Password

The Tunnel-Password attribute () be encoded the same as any other
attribute of data type "string" that contains a tag, such as Tunnel-Client-Endpoint (

). Since the attribute is no longer obfuscated in RADIUS/1.1, there is no need for a Salt
field or Data-Length fields as described in . The textual value of the
password can simply be encoded as is.

Note that the Tunnel-Password attribute is not of data type "text". The original reason in
 was because the attribute was encoded as an opaque and obfuscated binary blob. We

maintain that data type here, even though the attribute is no longer obfuscated. The contents of
the Tunnel-Password attribute do not have to be printable text or UTF-8 data as per the
definition of the "text" data type in .

However, implementations should be aware that passwords are often printable text, and where
the passwords are printable text, it can be useful to store and display them as printable text.
Where implementations can process non-printable data in the "text" data type, they use the
data type "text" for Tunnel-Password.

[RFC2868], Section 3.5 MUST
[RFC2868],

Section 3.3
[RFC2868], Section 3.5

[RFC2868]

[RFC8044], Section 3.4

MAY

5.1.4. Vendor-Specific Attributes

Any Vendor-Specific attribute that uses similar obfuscation be encoded as per their base
data type. Specifically, the MS-MPPE-Send-Key and MS-MPPE-Recv-Key attributes (

) be encoded as any other attribute of data type "string" ().

MUST
[RFC2548],

Section 2.4 MUST [RFC8044], Section 3.4

RFC 9765 RADIUS/1.1 April 2025

DeKok Experimental Page 20

https://www.rfc-editor.org/rfc/rfc2865#section-5.3
https://www.rfc-editor.org/rfc/rfc2865#section-5.40
https://www.rfc-editor.org/rfc/rfc2865#section-5.3
https://www.rfc-editor.org/rfc/rfc2865#section-5.40
https://www.rfc-editor.org/rfc/rfc2865#section-5.40
https://www.rfc-editor.org/rfc/rfc2868#section-3.5
https://www.rfc-editor.org/rfc/rfc2868#section-3.3
https://www.rfc-editor.org/rfc/rfc2868#section-3.5
https://www.rfc-editor.org/rfc/rfc8044#section-3.4
https://www.rfc-editor.org/rfc/rfc2548#section-2.4
https://www.rfc-editor.org/rfc/rfc8044#section-3.4

5.2. Message-Authenticator
The Message-Authenticator attribute () be sent over a RADIUS/
1.1 connection. That attribute is not used or needed in RADIUS/1.1.

If the Message-Authenticator attribute is received over a RADIUS/1.1 connection, the attribute
 be silently discarded or treated as an "invalid attribute", as defined in

. That is, the Message-Authenticator attribute is no longer used to authenticate packets for the
RADIUS/1.1 transport. Its existence (or not) in this transport is meaningless.

A system that receives a Message-Authenticator attribute in a packet treat it as an "invalid
attribute" as defined in . That is, the packet can still be processed, even if
the Message-Authenticator attribute is ignored.

For proxies, the Message-Authenticator attribute has always been defined as being created and
consumed on a "hop-by-hop" basis. That is, a proxy that received a Message-Authenticator
attribute from a client would never forward that attribute as is to another server. Instead, the
proxy would either suppress or recreate the Message-Authenticator attribute in the outgoing
request. This existing behavior is leveraged in RADIUS/1.1 to suppress the use of the Message-
Authenticator over a RADIUS/1.1 connection.

A proxy may receive an Access-Request packet over a RADIUS/1.1 connection and then forward
that packet over a RADIUS/UDP or a RADIUS/TCP connection. In that situation, the proxy
add a Message-Authenticator attribute to every Access-Request packet that is sent over an
insecure transport protocol.

The original text in , Note 1 required that the Message-Authenticator
attribute be present for certain Access-Request packets. It also required the use of the Message-
Authenticator when the Access-Request packet contained an EAP-Message attribute. Experience
has shown that some RADIUS clients never use the Message-Authenticator, even for the
situations where its use is suggested.

When the Message-Authenticator attribute is missing from Access- Request packets, it is often
possible to trivially forge or replay those packets. As such, it is that RADIUS
clients always include Message-Authenticator in Access-Request packets when using UDP or TCP
transport. As the scope of this document is limited to defining RADIUS/1.1, we cannot mandate
that behavior here. Instead, we can note that there are no known negatives to this behavior, and
there are definite positives, such as increased security.

[RFC3579], Section 3.2 MUST NOT

MUST [RFC6929], Section
2.8

MUST
[RFC6929], Section 2.8

SHOULD

[RFC3579], Section 3.3

RECOMMENDED

5.3. Message-Authentication-Code
Similarly, the Message-Authentication-Code attribute defined in
be sent over a RADIUS/1.1 connection. If it is received in a packet, it be treated as an
"invalid attribute" as defined in .

[RFC6218], Section 3.3 MUST NOT
MUST

[RFC6929], Section 2.8

RFC 9765 RADIUS/1.1 April 2025

DeKok Experimental Page 21

https://www.rfc-editor.org/rfc/rfc3579#section-3.2
https://www.rfc-editor.org/rfc/rfc6929#section-2.8
https://www.rfc-editor.org/rfc/rfc6929#section-2.8
https://www.rfc-editor.org/rfc/rfc6929#section-2.8
https://www.rfc-editor.org/rfc/rfc3579#section-3.3
https://www.rfc-editor.org/rfc/rfc6218#section-3.3
https://www.rfc-editor.org/rfc/rfc6929#section-2.8

As the Message-Authentication-Code attribute is no longer used in RADIUS/1.1, the related MAC-
Randomizer attribute () be sent over a RADIUS/1.1 connection. If
it is received in a packet, it be treated as an "invalid attribute" as defined in

.

[RFC6218], Section 3.2 MUST NOT
MUST [RFC6929],

Section 2.8

5.4. CHAP, MS-CHAP, and Similar Attributes
While some attributes such as CHAP-Password depend on insecure cryptographic primitives
such as MD5, these attributes are treated as opaque blobs when sent between a RADIUS client
and server. The contents of the attributes are not obfuscated, and they do not depend on the
RADIUS shared secret. As a result, these attributes are unchanged in RADIUS/1.1.

Similarly, MS-CHAP depends on MD4, and RADIUS/1.1 does not change the definition of any MS-
CHAP attributes. However, MS-CHAP has been broken for decades, as noted in . The
only appropriate use case for MS-CHAP is when it is protected by a secure transport such as
RADIUS/TLS or RADIUS/DTLS, or when it is used for "inner tunnel" authentication methods as
with the Protected Extensible Authentication Protocol (PEAP) or TTLS.

A server implementing this specification can proxy and authenticate CHAP, MS-CHAP, etc.
without any issue. The RADIUS/1.1 protocol changes how RADIUS packets are authenticated and
how "secret" data is obfuscated inside of a RADIUS packet. It does not change any authentication
method that is transported inside of RADIUS.

[ASLEAP]

5.5. Original-Packet-Code
 defines an Original-Packet-Code attribute. This attribute is needed because

otherwise it is impossible to correlate the Protocol-Error response packet with a particular
request packet. The definition in describes the reasoning behind this need:

The Original-Packet-Code contains the code from the request that generated the
protocol error so that clients can disambiguate requests with different codes and the
same ID.

This attribute is no longer needed in RADIUS/1.1. The Identifier field is unused, so it impossible
for two requests to have the "same" ID. Instead, the Token field permits clients and servers to
correlate requests and responses, independent of the Code value being used.

Therefore, the Original-Packet-Code attribute () be sent over a
RADIUS/1.1 connection. If it is received in a packet, it be treated as an "invalid attribute" as
defined in .

[RFC7930], Section 4

[RFC7930], Section 4

[RFC7930], Section 4 MUST NOT
MUST

[RFC6929], Section 2.8

RFC 9765 RADIUS/1.1 April 2025

DeKok Experimental Page 22

https://www.rfc-editor.org/rfc/rfc6218#section-3.2
https://www.rfc-editor.org/rfc/rfc6929#section-2.8
https://www.rfc-editor.org/rfc/rfc7930#section-4
https://www.rfc-editor.org/rfc/rfc7930#section-4
https://www.rfc-editor.org/rfc/rfc7930#section-4
https://www.rfc-editor.org/rfc/rfc6929#section-2.8

6. Other Considerations When Using ALPN
Most of the differences between RADIUS and RADIUS/1.1 are in the packet header and attribute
handling, as discussed above. The remaining issues are a small set of unrelated topics, and are
discussed here.

6.1. Protocol-Error
There are a number of situations where a RADIUS server is unable to respond to a request. One
situation is where the server depends on a database, and the database is down. While arguably
the server should close all incoming connections when it is unable to do anything, this action is
not always effective. A client may aggressively try to open new connections or send packets to an
unconnected UDP destination where the server is not listening. Another situation where the
server is unable to respond is when the server is proxying packets, and the outbound
connections are either full or failed.

In all RADIUS specifications prior to this one, there is no way for the server to send a client the
positive signal that it received a request but is unable to send a response. Instead, the server
usually just discards the request, which to the client is indistinguishable from the situation
where the server is down. This failure case is made worse by the fact that perhaps some proxied
packets succeed while others fail. The client can only conclude then that the server is randomly
dropping packets and is unreliable.

It would be very useful for servers to signal to clients that they have received a request but are
unable to process it. This specification uses the Protocol-Error packet () as
that signal. The use of Protocol-Error allows for both hop-by-hop signaling in the case of proxy
forwarding errors, and also for end-to-end signaling of server to client. Such signaling should
greatly improve the robustness of the RADIUS protocol.

When a RADIUS/1.1 server determines that it is unable to process an Access-Request or
Accounting-Request packet, it respond with a Protocol-Error packet containing an Error-
Cause attribute. A proxy that cannot forward the packet respond with either 502 (Request
Not Routable (Proxy)) or 505 (Other Proxy Processing Error). This requirement is to help
distinguish failures in the proxy chain from failures at the final (i.e., home) server.

For a home server, if none of the Error-Cause values match the reason for the failure, then the
value 506 (Resources Unavailable) be used.

When a RADIUS proxy receives a Protocol-Error reply, it examine the value of the Error-
Cause attribute. If there is no Error-Cause attribute, or if its value is something other than 502
(Request Not Routable (Proxy)), 505 (Other Proxy Processing Error), or 506 (Resources
Unavailable), then the proxy return the Protocol-Error response packet to the client and
include the Error-Cause attribute from the response it received. This process allows for full "end-
to-end" signaling of servers to clients.

[RFC7930], Section 4

MUST
MUST

MUST

MUST

MUST

RFC 9765 RADIUS/1.1 April 2025

DeKok Experimental Page 23

https://www.rfc-editor.org/rfc/rfc7930#section-4

In all situations other than those outlined in the preceding paragraph, a client that receives a
Protocol-Error reply reprocess the original outgoing packet through the client forwarding
algorithm. This requirement includes both clients that originate RADIUS traffic and proxies that
see an Error-Cause attribute of 502 (Request Not Routable (Proxy)) or 505 (Other Proxy
Processing Error).

The expected result of this processing is that the client forwards the packet to a different server.
Clients forward the packet over the same connection and forward it
over a different connection to the same server.

This process may continue over multiple connections and multiple servers, until the client either
times out the request or fails to find a forwarding destination for the packet. A proxy that is
unable to forward a packet reply with a Protocol-Error packet containing an Error-Cause,
as defined above. A client that originates packets treat such a request as if it had received
no response.

This behavior is intended to improve the stability of the RADIUS protocol by addressing issues
first raised in .

MUST

MUST NOT SHOULD NOT

MUST
MUST

[RFC3539], Section 2.8

6.2. Status-Server
, and by extension , suggest that the Identifier value zero (0) be

reserved for use with Status-Server as an application-layer watchdog. This practice be
used for RADIUS/1.1, as the Identifier field is not used in this transport profile.

The rationale for reserving one value of the Identifier field was the limited number of Identifiers
available (256) and the overlap in Identifiers between Access-Request packets and Status-Server
packets. If all 256 Identifier values had been used to send Access-Request packets, then there
would be no Identifier value available for sending a Status-Server packet.

In contrast, the Token field allows for 232 outstanding packets on one RADIUS/1.1 connection. If
there is a need to send a Status-Server packet, it is nearly always possible to allocate a new value
for the Token field. If instead there are 232 outstanding packets for one connection, then it is
likely that something has gone catastrophically wrong. In that case, the safest way forward is
likely to just close the connection.

[RFC6613], Section 2.6.5 [RFC7360]
MUST NOT

6.3. Proxies
A RADIUS proxy normally decodes and then re-encodes all attributes, including obfuscated ones.
A RADIUS proxy will not generally rewrite the content of the attributes it proxies (unless site-
local policy requires such a rewrite). While some attributes may be modified due to
administrative or policy rules on the proxy, the proxy will generally not rewrite the contents of
attributes such as User-Password, Tunnel-Password, CHAP-Password, MS-CHAP-Password, MS-
MPPE keys, etc. Therefore, all attributes are transported through a RADIUS/1.1 connection
without changing their values or contents.

RFC 9765 RADIUS/1.1 April 2025

DeKok Experimental Page 24

https://www.rfc-editor.org/rfc/rfc3539#section-2.8
https://www.rfc-editor.org/rfc/rfc6613#section-2.6.5

A proxy may negotiate RADIUS/1.1 (or not) with a particular client or clients, and it may
negotiate RADIUS/1.1 (or not) with a server or servers it connects to, in any combination. As a
result, this specification is fully compatible with all past, present, and future RADIUS attributes.

7. Other RADIUS Considerations
This section discusses issues in RADIUS that need to be addressed in order to support ALPN, but
which aren't directly part of the RADIUS/1.1 protocol.

7.1. Crypto-Agility
The crypto-agility requirements of are addressed in and in

. This specification makes no changes or additions to those specifications.
The use of ALPN and the removal of MD5 has no impact on the security or privacy of the
protocol.

RADIUS/TLS has been widely deployed in at least eduroam (and) and in
OpenRoaming . RADIUS/DTLS has seen less adoption, but it is known to be
supported in many RADIUS clients and servers.

It is that all implementations of historic RADIUS/TLS be updated to support this
specification. Where a system already implements RADIUS over TLS, the additional effort to
implement this specification is minimal. Once implementations support it, administrators can
gain the benefit of it with little or no configuration changes. This specification is backwards
compatible with and . It is only potentially subject to down-bidding attacks
if implementations do not enforce ALPN correctly on session resumption.

All crypto-agility needed or used by this specification is implemented in TLS. This specification
also removes all cryptographic primitives from the application-layer protocol (RADIUS) being
transported by TLS. As discussed in the following section, this specification also bans the
development of all new cryptographic or crypto-agility methods in the RADIUS protocol.

[RFC6421] [RFC6614], Appendix C
[RFC7360], Section 10.1

[RFC7593] [EDUROAM]
[OPENROAMING]

RECOMMENDED

[RFC6614] [RFC7360]

7.2. Error-Cause Attribute
The Error-Cause attribute is defined in . The "Table of Attributes" section given in

 permits that attribute to appear in CoA-NAK and Disconnect-NAK packets.
As no other packet type is listed, the implication is that the Error-Cause attribute cannot appear
in any other packet. also permits Error-Cause to appear in Protocol-Error packets.

However, suggests that Error-Cause may appear in Access-Reject
packets. No explanation is given for this change from . There is not even an
acknowledgment that this suggestion is a change from any previous specification. We correct
that issue here.

This specification updates to allow the Error-Cause attribute to appear in Access-
Reject packets. It is that implementations include the Error-Cause attribute in
Access-Reject packets where appropriate.

[RFC5176]
[RFC5176], Section 3.6

[RFC7930]

[RFC5080], Section 2.6.1
[RFC5176]

[RFC5176]
RECOMMENDED

RFC 9765 RADIUS/1.1 April 2025

DeKok Experimental Page 25

https://www.rfc-editor.org/rfc/rfc6614#appendix-C
https://www.rfc-editor.org/rfc/rfc7360#section-10.1
https://www.rfc-editor.org/rfc/rfc5176#section-3.6
https://www.rfc-editor.org/rfc/rfc5080#section-2.6.1

That is, the reason for sending the Access-Reject packet (or the Protocol-Error packet) may match
a defined Error-Cause value. In that case, it is useful for implementations to send an Error-Cause
attribute with that value. This behavior can help RADIUS system administrators debug issues in
complex proxy chains.

For example, a proxy may normally forward Access-Request packets that contain EAP-Message
attributes. The proxy can determine if the contents of the EAP-Message are invalid. One example
of an invalid EAP-Message is where the first octet has value larger than 4. In that case, there may
be no benefit to forwarding the packet, as the home server will reject it. It may then be possible
for the proxy (with the knowledge and consent of involved parties) to immediately reply with an
Access-Reject containing an Error-Cause attribute with value 202 (Invalid EAP Packet (Ignored)).

Another possibility is that a proxy is configured to forward packets for a particular realm, but it
has determined that there are no available connections to the next hop for that realm. In that
case, it may be possible for the proxy (again, with the knowledge and consent of involved
parties) to reply with an Access-Reject containing an Error-Cause attribute with value 502
(Request Not Routable (Proxy)).

These examples are given only for illustrative and informational purposes. While it is useful to
return an informative value for the Error-Cause attribute, proxies can only modify the traffic
they forward with the explicit knowledge and consent of all involved parties.

7.3. Future Standards
Future work may define new attributes, packet types, etc. It is important to be able to do such
work without requiring that every new standard mention RADIUS/1.1 explicitly. This document
defines RADIUS/1.1 as having functional overlap with legacy RADIUS: the protocol state machine
is unchanged, the packet header Code field is unchanged, and the attribute format is largely
unchanged. As a result, any new packet Code or attribute defined for RADIUS is explicitly
compatible with RADIUS/1.1; the field contents and meanings are identical. The only difference
between the two protocols is that obfuscated attributes in RADIUS are not obfuscated in RADIUS/
1.1, and this document defines how that mapping is done.

Any future specification only needs to mention RADIUS/1.1 if it adds fields to the RADIUS/1.1
packet header. Otherwise, transport considerations for RADIUS/1.1 are identical to RADIUS over
(D)TLS.

We reiterate that this specification defines a new transport profile for RADIUS. It does not define
a completely new protocol. Any future specification that defines a new attribute define it
for RADIUS/UDP first, and afterwards those definitions can be applied to this transport profile.

New specifications define new attributes that use the obfuscation methods for User-
Password as defined in or for Tunnel-Password as defined in

. There is no need for those specifications to describe how those new attributes are
transported in RADIUS/1.1. Since RADIUS/1.1 does not use MD5, any obfuscated attributes will by
definition be transported as their underlying data type "text" () or
"string" ().

MUST

MAY
[RFC2865], Section 5.2 [RFC2868],

Section 3.5

[RFC8044], Section 3.4
[RFC8044], Section 3.5

RFC 9765 RADIUS/1.1 April 2025

DeKok Experimental Page 26

https://www.rfc-editor.org/rfc/rfc2865#section-5.2
https://www.rfc-editor.org/rfc/rfc2868#section-3.5
https://www.rfc-editor.org/rfc/rfc8044#section-3.4
https://www.rfc-editor.org/rfc/rfc8044#section-3.5

New RADIUS specifications define attributes that can only be transported via RADIUS
over TLS. The RADIUS protocol has no way to signal the security requirements of individual
attributes. Any existing implementation will handle these new attributes as "invalid
attributes" () and could forward them over an insecure link. As RADIUS
security and signaling is hop-by-hop, there is no way for a RADIUS client or server to even know
if such forwarding is taking place. For these reasons and more, it is therefore inappropriate to
define new attributes that are only secure if they use a secure transport layer.

The result is that specifications do not need to mention this transport profile or make any special
provisions for dealing with it. This specification defines how RADIUS packet encoding, decoding,
authentication, and verification are performed when using RADIUS/1.1. So long as any future
specification uses the existing schemes for encoding, decoding, etc., that are defined for RADIUS,
no additional text in future documents is necessary in order to be compatible with RADIUS/1.1.

We note that it is theoretically possible for future standards to define new cryptographic
primitives for use with RADIUS/UDP. In that case, those documents would likely have to describe
how to transport that data in RADIUS/1.1. We believe that such standards are unlikely to be
published, as other efforts in the RADEXT Working Group are forbidding such updates to
RADIUS.

MUST NOT

[RFC6929], Section 2.8

8. Privacy Considerations
This specification requires secure transport for RADIUS. RADIUS/1.1 has all of the privacy
benefits of RADIUS/TLS and RADIUS/DTLS and none of the privacy or
security issues of RADIUS/UDP or RADIUS/TCP .

[RFC6614] [RFC7360]
[RFC2865] [RFC6613]

9. Security Considerations
The primary focus of this document is addressing security considerations for RADIUS. This
specification relies on TLS and associated ALPN for much of its security. We refer the reader to

 and for discussions of the security of those protocols. The discussion in this
section is limited to issues unique to this specification.

Implementations should rely on the underlying TLS library to perform ALPN version
negotiation. That is, implementations should supply a list of permitted ALPN strings to the TLS
library, and let it return the negotiated value.

There are few other opportunities for security issues. If an implementation gets ALPN wrong,
then the wrong application data will be transported inside of TLS. While RADIUS/1.0 and
RADIUS/1.1 share similar packet formats, the protocols are not mutually compatible.

When an implementation receives the packets for a RADIUS version that is not supported by this
connection, it will not be able to process the packets. Implementations can produce log messages
indicating that the application-layer data is unexpected and close the connection. In addition,
the implementations that see the incorrect application data already have full access to all secrets,

[RFC8446] [RFC7360]

RFC 9765 RADIUS/1.1 April 2025

DeKok Experimental Page 27

https://www.rfc-editor.org/rfc/rfc6929#section-2.8

11. References

passwords, etc. being transported, so any protocol differences do not result in any security
issues. Since all of the application data is protected by TLS, there is no possibility for an attacker
to obtain any extra data as a result of this misconfiguration.

RADIUS/1.0 requests sent over a RADIUS/1.1 connection may be accepted by the RADIUS/1.1
server, as the server will ignore the ID field and try to use portions of the Request Authenticator
as a Token. However, the reply from the RADIUS/1.1 server will fail the Response Authenticator
validation by the RADIUS/1.0 client. Therefore, the responses will be dropped. The client will
generally log these failures, and an administrator will address the issue.

RADIUS/1.1 requests sent over a RADIUS/1.0 connection will generally be discarded by the
RADIUS/1.0 server, as the packets will fail the Request Authenticator checks. That is, all request
packets such as Accounting-Request, CoA-Request, and Disconnect-Request will be discarded by
the server. For Access-Request packets containing EAP-Message, the packets will be missing
Message-Authenticator and will therefore be discarded by the server. Other Access-Request
packets that contain obfuscated attributes such as User-Password will have those attributes
decoded to nonsense, thus resulting in Access-Reject responses.

RADIUS/1.1 Access-Request packets containing non-obfuscated attributes such as CHAP-
Password may be accepted by a RADIUS/1.0 server, but the response will contain a Response
Authenticator (i.e., MD5 hash) and not a Token that matches the Token in the request. A similar
analysis applies for Access-Request packets containing Service-Type = Authorize-Only.

In conclusion, any mismatch of versions between client and server will result in most request
packets being discarded by the server and all response packets being discarded by the client.
Therefore, the two protocols are incompatible and safe from misconfigurations or erroneous
implementations.

Protocol:
Identification Sequence:
Reference:

Protocol:
Identification Sequence:
Reference:

10. IANA Considerations
IANA has updated the "TLS Application-Layer Protocol Negotiation (ALPN) Protocol IDs" registry
with two new entries:

RADIUS/1.0
0x72 0x61 0x64 0x69 0x75 0x73 0x2f 0x31 0x2e 0x30 ("radius/1.0")

RFC 9765

RADIUS/1.1
0x72 0x61 0x64 0x69 0x75 0x73 0x2f 0x31 0x2e 0x31 ("radius/1.1")

RFC 9765

11.1. Normative References

RFC 9765 RADIUS/1.1 April 2025

DeKok Experimental Page 28

[RFC2119]

[RFC2865]

[RFC6421]

[RFC6614]

[RFC6929]

[RFC7301]

[RFC7360]

[RFC8044]

[RFC8174]

, , ,
, , March 1997,
.

, , , and ,
, , , June 2000,

.

,
, , , November 2011,

.

, , , and ,
, , , May 2012,

.

 and ,
, , , April 2013,

.

, , , and ,
, ,

, July 2014, .

,
, , , September 2014,

.

, , , , January
2017, .

, ,
, , , May 2017,

.

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Rigney, C. Willens, S. Rubens, A. W. Simpson "Remote Authentication Dial
In User Service (RADIUS)" RFC 2865 DOI 10.17487/RFC2865 <https://
www.rfc-editor.org/info/rfc2865>

Nelson, D., Ed. "Crypto-Agility Requirements for Remote Authentication Dial-In
User Service (RADIUS)" RFC 6421 DOI 10.17487/RFC6421
<https://www.rfc-editor.org/info/rfc6421>

Winter, S. McCauley, M. Venaas, S. K. Wierenga "Transport Layer Security
(TLS) Encryption for RADIUS" RFC 6614 DOI 10.17487/RFC6614
<https://www.rfc-editor.org/info/rfc6614>

DeKok, A. A. Lior "Remote Authentication Dial In User Service (RADIUS)
Protocol Extensions" RFC 6929 DOI 10.17487/RFC6929 <https://
www.rfc-editor.org/info/rfc6929>

Friedl, S. Popov, A. Langley, A. E. Stephan "Transport Layer Security (TLS)
Application-Layer Protocol Negotiation Extension" RFC 7301 DOI 10.17487/
RFC7301 <https://www.rfc-editor.org/info/rfc7301>

DeKok, A. "Datagram Transport Layer Security (DTLS) as a Transport Layer for
RADIUS" RFC 7360 DOI 10.17487/RFC7360 <https://www.rfc-
editor.org/info/rfc7360>

DeKok, A. "Data Types in RADIUS" RFC 8044 DOI 10.17487/RFC8044
<https://www.rfc-editor.org/info/rfc8044>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

[ASLEAP]

[EDUROAM]

[FIPS-140-3]

[OPENROAMING]

11.2. Informative References

, , November
2020, .

, , .

, , ,
, March 2019,

.

, ,
.

"asleap - recovers weak LEAP and PPTP passwords" commit 254acab
<https://github.com/joswr1ght/asleap>

eduroam "eduroam" <https://eduroam.org>

NIST "Security Requirements for Cryptographic Modules" NIST FIPS 140-3 DOI
10.6028/NIST.FIPS.140-3 <https://nvlpubs.nist.gov/nistpubs/FIPS/
NIST.FIPS.140-3.pdf>

Wireless Broadband Alliance "OpenRoaming: One global Wi-Fi network"
<https://wballiance.com/openroaming/>

RFC 9765 RADIUS/1.1 April 2025

DeKok Experimental Page 29

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2865
https://www.rfc-editor.org/info/rfc2865
https://www.rfc-editor.org/info/rfc6421
https://www.rfc-editor.org/info/rfc6614
https://www.rfc-editor.org/info/rfc6929
https://www.rfc-editor.org/info/rfc6929
https://www.rfc-editor.org/info/rfc7301
https://www.rfc-editor.org/info/rfc7360
https://www.rfc-editor.org/info/rfc7360
https://www.rfc-editor.org/info/rfc8044
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://github.com/joswr1ght/asleap
https://eduroam.org
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-3.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-3.pdf
https://wballiance.com/openroaming/

[RFC1321]

[RFC2548]

[RFC2866]

[RFC2868]

[RFC3539]

[RFC3579]

[RFC5077]

[RFC5080]

[RFC5176]

[RFC5281]

[RFC5931]

[RFC6151]

[RFC6218]

, , ,
, April 1992, .

, , ,
, March 1999, .

, , , , June 2000,
.

, , , , , and ,
, , , June

2000, .

 and ,
, , , June 2003,

.

 and ,
, ,

, September 2003, .

, , , and ,
, ,

, January 2008, .

 and ,
, ,

, December 2007, .

, , , , and ,

, , , January 2008,
.

 and ,
,

, , August 2008,
.

 and ,
, , ,

August 2010, .

 and ,
, , , March

2011, .

, , , and ,
, , ,

April 2011, .

Rivest, R. "The MD5 Message-Digest Algorithm" RFC 1321 DOI 10.17487/
RFC1321 <https://www.rfc-editor.org/info/rfc1321>

Zorn, G. "Microsoft Vendor-specific RADIUS Attributes" RFC 2548 DOI 10.17487/
RFC2548 <https://www.rfc-editor.org/info/rfc2548>

Rigney, C. "RADIUS Accounting" RFC 2866 DOI 10.17487/RFC2866
<https://www.rfc-editor.org/info/rfc2866>

Zorn, G. Leifer, D. Rubens, A. Shriver, J. Holdrege, M. I. Goyret "RADIUS
Attributes for Tunnel Protocol Support" RFC 2868 DOI 10.17487/RFC2868

<https://www.rfc-editor.org/info/rfc2868>

Aboba, B. J. Wood "Authentication, Authorization and Accounting (AAA)
Transport Profile" RFC 3539 DOI 10.17487/RFC3539 <https://
www.rfc-editor.org/info/rfc3539>

Aboba, B. P. Calhoun "RADIUS (Remote Authentication Dial In User Service)
Support For Extensible Authentication Protocol (EAP)" RFC 3579 DOI 10.17487/
RFC3579 <https://www.rfc-editor.org/info/rfc3579>

Salowey, J. Zhou, H. Eronen, P. H. Tschofenig "Transport Layer Security
(TLS) Session Resumption without Server-Side State" RFC 5077 DOI 10.17487/
RFC5077 <https://www.rfc-editor.org/info/rfc5077>

Nelson, D. A. DeKok "Common Remote Authentication Dial In User Service
(RADIUS) Implementation Issues and Suggested Fixes" RFC 5080 DOI 10.17487/
RFC5080 <https://www.rfc-editor.org/info/rfc5080>

Chiba, M. Dommety, G. Eklund, M. Mitton, D. B. Aboba "Dynamic
Authorization Extensions to Remote Authentication Dial In User Service
(RADIUS)" RFC 5176 DOI 10.17487/RFC5176 <https://www.rfc-
editor.org/info/rfc5176>

Funk, P. S. Blake-Wilson "Extensible Authentication Protocol Tunneled
Transport Layer Security Authenticated Protocol Version 0 (EAP-TTLSv0)" RFC
5281 DOI 10.17487/RFC5281 <https://www.rfc-editor.org/info/
rfc5281>

Harkins, D. G. Zorn "Extensible Authentication Protocol (EAP)
Authentication Using Only a Password" RFC 5931 DOI 10.17487/RFC5931

<https://www.rfc-editor.org/info/rfc5931>

Turner, S. L. Chen "Updated Security Considerations for the MD5 Message-
Digest and the HMAC-MD5 Algorithms" RFC 6151 DOI 10.17487/RFC6151

<https://www.rfc-editor.org/info/rfc6151>

Zorn, G. Zhang, T. Walker, J. J. Salowey "Cisco Vendor-Specific RADIUS
Attributes for the Delivery of Keying Material" RFC 6218 DOI 10.17487/RFC6218

<https://www.rfc-editor.org/info/rfc6218>

RFC 9765 RADIUS/1.1 April 2025

DeKok Experimental Page 30

https://www.rfc-editor.org/info/rfc1321
https://www.rfc-editor.org/info/rfc2548
https://www.rfc-editor.org/info/rfc2866
https://www.rfc-editor.org/info/rfc2868
https://www.rfc-editor.org/info/rfc3539
https://www.rfc-editor.org/info/rfc3539
https://www.rfc-editor.org/info/rfc3579
https://www.rfc-editor.org/info/rfc5077
https://www.rfc-editor.org/info/rfc5080
https://www.rfc-editor.org/info/rfc5176
https://www.rfc-editor.org/info/rfc5176
https://www.rfc-editor.org/info/rfc5281
https://www.rfc-editor.org/info/rfc5281
https://www.rfc-editor.org/info/rfc5931
https://www.rfc-editor.org/info/rfc6151
https://www.rfc-editor.org/info/rfc6218

[RFC6613]

[RFC7585]

[RFC7593]

[RFC7930]

[RFC8446]

, , , , May 2012,
.

 and ,
, ,

, October 2015, .

, , and ,
, , , September 2015,

.

, , ,
, August 2016, .

, , ,
, August 2018, .

DeKok, A. "RADIUS over TCP" RFC 6613 DOI 10.17487/RFC6613
<https://www.rfc-editor.org/info/rfc6613>

Winter, S. M. McCauley "Dynamic Peer Discovery for RADIUS/TLS and
RADIUS/DTLS Based on the Network Access Identifier (NAI)" RFC 7585 DOI
10.17487/RFC7585 <https://www.rfc-editor.org/info/rfc7585>

Wierenga, K. Winter, S. T. Wolniewicz "The eduroam Architecture for
Network Roaming" RFC 7593 DOI 10.17487/RFC7593 <https://
www.rfc-editor.org/info/rfc7593>

Hartman, S. "Larger Packets for RADIUS over TCP" RFC 7930 DOI 10.17487/
RFC7930 <https://www.rfc-editor.org/info/rfc7930>

Rescorla, E. "The Transport Layer Security (TLS) Protocol Version 1.3" RFC 8446
DOI 10.17487/RFC8446 <https://www.rfc-editor.org/info/rfc8446>

Acknowledgments
Thanks to , , , ,

, , , and for reviews and feedback.
Bernard Aboba Karri Huhtanen Heikki Vatiainen Alexander Clouter Michael

Richardson Hannes Tschofenig Matthew Newton Josh Howlett

Author's Address
Alan DeKok
FreeRADIUS

aland@freeradius.orgEmail:

RFC 9765 RADIUS/1.1 April 2025

DeKok Experimental Page 31

https://www.rfc-editor.org/info/rfc6613
https://www.rfc-editor.org/info/rfc7585
https://www.rfc-editor.org/info/rfc7593
https://www.rfc-editor.org/info/rfc7593
https://www.rfc-editor.org/info/rfc7930
https://www.rfc-editor.org/info/rfc8446
mailto:aland@freeradius.org

	RFC 9765
	RADIUS/1.1: Leveraging Application-Layer Protocol Negotiation (ALPN) to Remove MD5
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. The RADIUS/1.1 Transport Profile for RADIUS
	3.1. ALPN Name for RADIUS/1.1
	3.2. Operation of ALPN
	3.3. Configuration of ALPN for RADIUS/1.1
	3.3.1. Using Protocol-Error for Signaling ALPN Failure
	3.3.2. Tabular Summary

	3.4. Miscellaneous Items
	3.5. Session Resumption

	4. RADIUS/1.1 Packet and Attribute Formats
	4.1. RADIUS/1.1 Packet Format
	4.2. The Token Field
	4.2.1. Sending Packets
	4.2.2. Receiving Packets

	5. Attribute Handling
	5.1. Obfuscated Attributes
	5.1.1. User-Password
	5.1.2. CHAP-Challenge
	5.1.3. Tunnel-Password
	5.1.4. Vendor-Specific Attributes

	5.2. Message-Authenticator
	5.3. Message-Authentication-Code
	5.4. CHAP, MS-CHAP, and Similar Attributes
	5.5. Original-Packet-Code

	6. Other Considerations When Using ALPN
	6.1. Protocol-Error
	6.2. Status-Server
	6.3. Proxies

	7. Other RADIUS Considerations
	7.1. Crypto-Agility
	7.2. Error-Cause Attribute
	7.3. Future Standards

	8. Privacy Considerations
	9. Security Considerations
	10. IANA Considerations
	11. References
	11.1. Normative References
	11.2. Informative References

	Acknowledgments
	Author's Address

